
XiVO Documentation
Release 16.08

Avencall

October 13, 2016

Contents

1 Table of Contents 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 Getting Started . 8
1.4 Upgrading . 14
1.5 XiVO Client . 51
1.6 System . 69
1.7 Ecosystem . 127
1.8 Administration . 142
1.9 Contact Center . 271
1.10 High Availability (HA) . 305
1.11 Scalability and Distributed Systems . 315
1.12 API and SDK . 326
1.13 Contributors . 391
1.14 Quality assurance . 467
1.15 Troubleshooting . 468
1.16 Community Documentation . 474
1.17 Documentation changelog . 475

2 Changelog 477

3 Indices and tables 479

i

ii

XiVO Documentation, Release 16.08

XiVO is an application suite developed by Avencall Group, based on several free existing components includ-
ing Asterisk, and our own developments to provide communication services (IPBX, Unified Messaging, ...) to
businesses.

XiVO is free software. Most of its distinctive components, and XiVO as a whole, are distributed under the GPLv3
license.

You may also check the XiVO blog for more information.

XiVO documentation is also available as a downloadable HTML, EPUB or PDF file. See the downloads page for
a list of available files or use the menu on the lower right.

Contents 1

http://www.avencall.com/
http://www.asterisk.org/
http://www.gnu.org/philosophy/free-sw.html
http://blog.xivo.io/
https://readthedocs.org/projects/xivo/downloads/

XiVO Documentation, Release 16.08

2 Contents

CHAPTER 1

Table of Contents

1.1 Introduction

XiVO is a PABX application developed by the Avencall Group based on several free existant components includ-
ing Asterisk and our own developments. XiVO provides a solution for enterprises who wish to replace or add
telephone services (PABX).

XiVO is free software. Most of its distinctive components, and XiVO as a whole, are distributed under the GPLv3
license.

1.1.1 XiVO History

XiVO was created in 2005 by Proformatique.

XiVO 1.2 was released on February 3, 2012.

1.2 Installation

1.2.1 Installing the System

Please refer to the section Troubleshooting if ever you have errors during the installation.

There are two official ways to install XiVO:

• using the official ISO image

• using a minimal Debian installation and the XiVO installation script

XiVO can be installed on both virtual (QEMU/KVM, VirtualBox, ...) and physical machines. That said, since
Asterisk is sensitive to timing issues, you might get better results by installing XiVO on real hardware.

Installing from the ISO image

• Download the ISO image. (latest version) (all versions)

• Boot from the ISO image, select Install and follow the instructions. You must select a locale with
charset UTF-8.

• At the end of the installation, you can continue by running the configuration wizard.

3

http://www.avencall.com
https://projects.xivo.io/news/49
http://mirror.xivo.io/iso/xivo-current
http://mirror.xivo.io/iso/archives

XiVO Documentation, Release 16.08

Installing from a minimal Debian installation

XiVO can be installed directly over a 32-bit or a 64-bit Debian jessie. When doing so, you are strongly advised
to start with a clean and minimal installation of Debian jessie.

The latest installation image for Debian jessie can be found at https://www.debian.org/releases/jessie/debian-
installer.

Requirements

The installed Debian must:

• use the architecure i386 or amd64

• have a default locale with charset UTF-8

In case you want to migrate a XiVO from i386 to amd64, see Migrate XiVO from i386 (32 bits) to amd64 (64
bits).

Installation

Once you have your Debian jessie properly installed, download the XiVO installation script:

wget http://mirror.xivo.io/fai/xivo-migration/xivo_install_current.sh

And run it:

bash xivo_install_current.sh

Note: For testing purposes, you can alternatively install the release candidate or developement version of XiVO.
Beware that there is no guarantee that these versions will work nor upgrade correctly.

To install the release candidate version:

bash xivo_install_current.sh -r

To install the developement version:

bash xivo_install_current.sh -d

At the end of the installation, you can continue by running the configuration wizard.

Other installation methods

It’s also possible to install XiVO by PXE. More details available on our blog:

• http://blog.xivo.io/around-xivo-describe-industrial-installation-process.html

• http://blog.xivo.io/around-xivo-pxe-server-setup.html

• http://blog.xivo.io/around-xivo-pxe-and-preseeding.html

1.2.2 Running the Wizard

After the system installation, you must go through the wizard before being able to use your XiVO. Open your
browser and enter your server’s IP address in the navigation bar. (For example: http://192.168.1.10)

4 Chapter 1. Table of Contents

https://www.debian.org/releases/jessie/debian-installer
https://www.debian.org/releases/jessie/debian-installer
http://blog.xivo.io/around-xivo-describe-industrial-installation-process.html
http://blog.xivo.io/around-xivo-pxe-server-setup.html
http://blog.xivo.io/around-xivo-pxe-and-preseeding.html
http://192.168.1.10

XiVO Documentation, Release 16.08

Language

You first have to select the language you want to use for the wizard.

Fig. 1.1: Select the language

License

You then have to accept the GPLv3 License under which XiVO is distributed.

Fig. 1.2: Accept the license

Configuration

1. Enter the hostname (Allowed characters are : A-Z a-z 0-9 -)

2. Enter the domain name (Allowed characters are : A-Z a-z 0-9 - .)

3. Enter the password for the root user of the web interface,

4. Configure the IP address and gateway used by the VoIP interface

5. Finally, modify the DNS server information if needed.

Entities and Contexts

Contexts are used for managing various phone numbers that are used by your system.

• The Internal calls context manages extension numbers that can be reached internally

• The Incalls context manages calls coming from outside of your system

• The Outcalls context manages calls going from your system to the outside

1.2. Installation 5

XiVO Documentation, Release 16.08

Fig. 1.3: Basic configuration

Fig. 1.4: Entities and Contexts

6 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1. Enter the entity name (e.g. your organization name) (Allowed characters are : A-Z a-z 0-9 - .)

2. Enter the number interval for you internal context. The interval will define the users’s phone numbers for
your system (you can change it afterwards)

3. Enter the DID range and DID length for your system.

4. You may change the name of your outgoing calls context.

Validation

Finally, you can validate your configuration by clicking on the Validate button. Note that if you want to change
one of the settings you can go backwards in the wizard by clicking on the Previous button.

Warning: This is the last time the root password will be displayed. Take care to note it.

Congratulations, you now have a fully functional XiVO server.

To start configuring XiVO, see Getting Started.

1.2.3 Post Installation

Here are a few configuration options that are commonly changed once the installation is completed. Please note
that these changes are optional.

Display called name on internal calls

When you call internally another phone of the system you would like your phone to display the name of the called
person (instead of the dialed number only). To achieve this you must change the following SIP options:

• Services → IPBX → General settings → SIP Protocol → Default:

– Trust the Remote-Party-ID: yes,

– Send the Remote-Party-ID: select PAI

Incoming caller number display

The caller ID number on incoming calls depends on what is sent by your operator. You can modify it via the file
/etc/xivo/asterisk/xivo_in_callerid.conf.

Note: The reverse directory lookup use the caller ID number after it has been modified by
xivo_in_callerid.conf

Examples:

• If you use a prefix to dial outgoing numbers (like a 0) you should add a 0 to all the add = sections,

• You may want to display incoming numbers in E.164 format. For example, you can change the
[national1] section to:

callerid = ^0[1-9]\d{8}$
strip = 1
add = +33

To enable the changes you have to restart xivo-agid:

service xivo-agid restart

1.2. Installation 7

XiVO Documentation, Release 16.08

Time and date

• Configure your locale and default time zone device template => Configuration → Provisioning → Template
Device by editing the default template

• Configure the timezone in => Services → IPBX → General settings → Advanced → Timezone

• If needed, reconfigure your timezone for the system:

dpkg-reconfigure tzdata

Codecs

You should also select default codecs. It obviously depends on the telco links, the country, the phones, the usage,
etc. Here is a typical example for Europe (the main goal in this example is to select only G.711 A-Law instead of
both G.711 A-Law and G.711 µ-Law by default):

• SIP : Services → IPBX → General settings → SIP Protocol → Signaling:

– Customize codec : enabled

– Codec list:

G.711 A-Law
G.722
G.729A
H.264

• IAX2 : Services → IPBX → General settings → IAX Protocol → Default:

– Customize : enabled

– Codec list:

G.711 A-Law
G.722
G.729A
H.264

1.3 Getting Started

This section will show you how to create a user with a SIP line. This simple use case covers what a lot of people
need to start using a phone. You can use these steps for configuring a phone (e.g a softphone, an Analog-to-Digital
switch or a SIP phone).

This tutorial doesn’t cover how to automatically provision a supported device. For this, consult the provisionning
section.

We first need to log into the XiVO web interface. The web interface is where you can administer the whole system.

When logged in, you will see a page with all the status information about your system. This page helps you
monitor the health of your system and gives you information about your network. Please note the IP address of
your server, you will need this information later on when you will configure your device (e.g. phone)

To configure a device for a user, start by navigating to the IPBX menu. Hover over the Services tab, a dropdown
menu will appear. Click on IPBX.

Select the Users setting in the left menu.

From here, press on the “plus” sign. A pop up will appear where you can click on Add.

8 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.5: Logging into the XiVO

Fig. 1.6: System informations

Fig. 1.7: Menu IPBX

1.3. Getting Started 9

XiVO Documentation, Release 16.08

Fig. 1.8: Users settings

Fig. 1.9: Adding a new line

10 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

We now have the form that will allow us to create a new user. The three most important fields are ‘First name’,
‘Last name’ and ‘Language’. Fill in the fields and click on Save at the bottom. For our example, we will create a
used called ‘Alice Wonderland’.

Fig. 1.10: User information

Afterwards, click on the “Lines” tab.

Fig. 1.11: Lines menu

Enter a number for your phone. If you click inside the field, you will see the range of numbers you can use. For
our example, we will use ‘1000’.

By default, the selected protocol is SIP, which is what we want for now. Click on Save to create the line.

We now have a user named ‘Alice Wonderland’ with the phone number ‘1000’.

1.3. Getting Started 11

XiVO Documentation, Release 16.08

Fig. 1.12: Line information

Fig. 1.13: Save

Fig. 1.14: User added information

12 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Now we need to go get the SIP username and password to configure our phone. Go back to the IPBX menu on the
left, and click on ‘Lines’.

Fig. 1.15: Lines information

You will see a line associated with the user we just created. Click on the pencil icon to edit the line.

Fig. 1.16: Edit line

We can now see the username and password for the SIP line. you can configure your phone using the IP for your
server, the username and the password.

Fig. 1.17: General line information

1.3. Getting Started 13

XiVO Documentation, Release 16.08

1.4 Upgrading

Upgrading a XiVO is done by executing commands through a terminal on the server. You can connect to the server
either through SSH or with a physical console.

To upgrade your XiVO to the latest version, you must use the xivo-upgrade script. You can start an upgrade
with the command:

xivo-upgrade

Note:

• You can’t use xivo-upgrade if you have not run the wizard yet

• Upgrading from a version prior to XiVO 1.2 is not supported.

• When upgrading XiVO, you must also upgrade all associated XiVO Clients. There is currently no retro-
compatibility on older XiVO Client versions.

This script will update XiVO and restart all services.

There are 2 options you can pass to xivo-upgrade:

• -d to only download packages without installing them. This will still upgrade the package containing
xivo-upgrade and xivo-service.

• -f to force upgrade, without asking for user confirmation

xivo-upgrade uses the following environment variables:

• XIVO_CONFD_PORT to set the port used to query the HTTP API of xivo-confd (default is 9486)

1.4.1 Upgrade procedure

• Consult the roadmaps starting from your current version to the current prod version.

• Read all existing Upgrade Notes (see below) starting from your version to the latest version.

• For custom setups, follow the required procedures described below (e.g. HA cluster).

• To download the packages beforehand, run xivo-upgrade -d. This is not mandatory, but it does not
require stopping any service, so it may be useful to reduce the downtime of the server while upgrading.

• When ready, run xivo-upgrade which will start the upgrade process. Telephony services will be
stopped during the process

• When finished, check that all services are running (the list is displayed at the end of the upgrade).

• Check that services are correctly working like SIP registration, ISDN link status, internal/incoming/outgoing
calls, XiVO Client connections etc.

1.4.2 Version-specific upgrade procedures

Upgrading from XiVO 14.01, 14.02, 14.03, 14.04 installed from the ISO

In those versions, xivo-upgrade keeps XiVO on the same version. You must do the following, before the normal
upgrade:

echo "deb http://mirror.xivo.io/debian/ xivo-five main" > /etc/apt/sources.list.d/xivo-upgrade.list \
&& apt-get update \
&& apt-get install xivo-fai \
&& rm /etc/apt/sources.list.d/xivo-upgrade.list \
&& apt-get update

14 Chapter 1. Table of Contents

https://projects.xivo.io/projects/xivo/roadmap?tracker_ids%5B%5D=1&tracker_ids%5B%5D=2&completed=1

XiVO Documentation, Release 16.08

Upgrading from XiVO 13.24 and before

When upgrading from XiVO 13.24 or earlier, you must do the following, before the normal upgrade:

1. Ensure that the file /etc/apt/sources.list is not configured on archive.debian.org. In-
stead, it must be configured with a non-archive mirror, but still on the squeeze distribution, even if it is
not present on this mirror. For example:

deb http://ftp.us.debian.org/debian squeeze main

2. Add archive.debian.org in another file:

cat > /etc/apt/sources.list.d/squeeze-archive.list <<EOF
deb http://archive.debian.org/debian/ squeeze main
EOF

And after the upgrade:

rm /etc/apt/sources.list.d/squeeze-archive.list

Upgrading from XiVO 13.03 and before

When upgrading from XiVO 13.03 or earlier, you must do the following, before the normal upgrade:

wget http://mirror.xivo.io/xivo_current.key -O - | apt-key add -

Upgrading from XiVO 12.13 and before

When upgrading from XiVO 12.13 or earlier, you must do the following, before the normal upgrade:

apt-get update
apt-get install debian-archive-keyring

Upgrading from XiVO 1.2.1 and before

Upgrading from 1.2.0 or 1.2.1 requires a special procedure before executing xivo-upgrade:

apt-get update
apt-get install xivo-upgrade
/usr/bin/xivo-upgrade

1.4.3 Upgrading a cluster

Here are the steps for upgrading a cluster, i.e. two XiVO with High Availability (HA):

1. On the master : deactivate the database replication by commenting the cron in
/etc/cron.d/xivo-ha-master

2. On the slave, deactivate the xivo-check-master-status script cronjob by commenting the line in
/etc/cron.d/xivo-ha-slave

3. On the slave, start the upgrade:

xivo-slave:~$ xivo-upgrade

4. When the slave has finished, start the upgrade on the master:

xivo-master:~$ xivo-upgrade

5. When done, launch the database replication manually:

1.4. Upgrading 15

XiVO Documentation, Release 16.08

xivo-master:~$ xivo-master-slave-db-replication <slave ip>

6. Reactivate the cronjobs (see steps 1 and 2)

1.4.4 Upgrading to/from an archive version

Upgrade involving archive version of XiVO

Introduction

What is an archive version? An archive version refers to a XiVO installation whose version is frozen: you
can’t upgrade it until you manually change the upgrade server.

What is the point? Using archive versions enable you to upgrade your XiVO to a specific version, in case you
don’t want to upgrade to the latest (which is not recommended, but sometimes necessary). You will then be able
to upgrade your newer archive version to the latest version or to an even newer archive version.

Prerequisites

Warning: These procedures are complementary to the upgrade procedure listed in Version-specific upgrade
procedures. You must follow the version-specific procedure before running the following procedures.

Archive package names

Archive packages are named as follow:

XiVO version Archive package name
1.2 to 1.2.12 pf-fai-xivo-1.2-skaro-1.2.1
12.14 to 13.24 xivo-fai-skaro-13.04
13.25 to 14.17 xivo-fai-14.06
14.18+ packages removed

Upgrade from an archive to the latest version

Archive version < 13.25:

apt-get update
apt-get install {xivo-fai,xivo-fai-skaro}/squeeze-xivo-skaro-$(cat /usr/share/pf-xivo/XIVO-VERSION)
xivo-upgrade

Archive version >= 13.25 and < 14.18:

apt-get update
apt-get install xivo-fai
xivo-upgrade

Archive version >= 14.18:

xivo-dist xivo-five
xivo-upgrade

As a result, xivo-upgrade will upgrade XiVO to the latest stable version.

16 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Upgrade from an older non-archive version to a newer archive version

Non-archive version means any “normal” way of installing XiVO (ISO install, script install over pre-installed
Debian, xivo-upgrade).

Downgrades are not supported: you can only upgrade to a greater version.

We only support upgrades to archive versions >= 13.25, e.g. you can upgrade a 12.16 to 14.16, but not 12.16 to
13.16

Current version before 14.18 (here 13.25)
apt-get install xivo-fai-13.25

You are now considered in an archived version, see the section Upgrade from an older archive version to a newer
archive version below.

Current version after 14.18
xivo-dist xivo-15.12
apt-get update
apt-get install xivo-upgrade/xivo-15.12
xivo-upgrade

Upgrade from an older archive version to a newer archive version

Downgrades are not supported: you can only upgrade to a greater version.

We only support upgrades to archive versions >= 13.25, e.g. you can upgrade a 12.16 to 14.16, but not 12.16 to
13.16

1.2 - 13.24 to 13.25 - 14.17 (here 1.2.3 to 14.16)
cat > /etc/apt/sources.list.d/squeeze-archive.list <<EOF
deb http://archive.debian.org/debian/ squeeze main
EOF

apt-get update
apt-get install {xivo-fai,xivo-fai-skaro}/squeeze-xivo-skaro-1.2.3
apt-get update
apt-get install xivo-fai-14.16
apt-get update
apt-get install xivo-upgrade/xivo-14.16

cat > /etc/apt/preferences.d/50-xivo-14.16.pref <<EOF
Package: *
Pin: release a=xivo-five
Pin-Priority: -10

Package: *
Pin: release a=xivo-14.16
Pin-Priority: 700
EOF

xivo-upgrade
rm /etc/apt/preferences.d/50-xivo-14.16.pref
rm /etc/apt/sources.list.d/squeeze-archive.list
apt-get update

1.4. Upgrading 17

XiVO Documentation, Release 16.08

13.25 - 14.16 to 13.25 - 14.17 (here 13.25 to 14.16)
apt-get update
apt-get install xivo-fai
apt-get purge xivo-fai-13.25
apt-get update
apt-get install xivo-fai-14.16
apt-get update
apt-get install xivo-upgrade/xivo-14.16

cat > /etc/apt/preferences.d/50-xivo-five.pref <<EOF
Package: *
Pin: release a=xivo-five
Pin-Priority: -10
EOF

xivo-upgrade
rm /etc/apt/preferences.d/50-xivo-five.pref

13.25 - 14.17 to 14.18+ (here 14.05 to 15.11)
apt-get update
apt-get install xivo-fai
apt-get update
apt-get install xivo-dist
xivo-dist xivo-15.11
apt-get purge 'xivo-fai*'
apt-get update
apt-get install xivo-upgrade/xivo-15.11
xivo-upgrade

14.18+ to 14.19+ (here 14.18 to 15.12)
xivo-dist xivo-15.12
apt-get update
apt-get install xivo-upgrade/xivo-15.12
xivo-upgrade

1.4.5 Upgrading from i386 (32 bits) to amd64 (64 bits)

Migrate XiVO from i386 (32 bits) to amd64 (64 bits)

There is no fully automated method to migrate XiVO from i386 to amd64.

The procedure is:

1. Upgrade your i386 machine to XiVO >= 15.13

2. Install a XiVO amd64 using the same version as the upgraded XiVO i386

3. Make a backup of your XiVO i386 by following the backup procedure

4. Copy the backup tarballs to the XiVO amd64

5. Restore the backup by following the restore procedure

Before starting the services after restoring the backup on the XiVO amd64, you should ensure that there won’t
be a conflict between the two machines, e.g. two DHCP servers on the same broadcast domain, or both XiVO
fighting over the same SIP trunk register. You can disable the XiVO i386 by running:

xivo-service stop

But be aware the XiVO i386 will be enabled again after you reboot it.

18 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.4.6 Troubleshooting

Postgresql

When upgrading XiVO, if you encounter problems related to the system locale, see PostgreSQL localization
errors.

xivo-upgrade

If xivo-upgrade fails or aborts in mid-process, the system might end up in a faulty condition. If in doubt, run the
following command to check the current state of xivo’s firewall rules:

iptables -nvL

If, among others, it displays something like the following line (notice the DROP and 5060):

0 0 DROP udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:5060

Then your XiVO will not be able to register any SIP phones. In this case, you must delete the DROP rules with
the following command:

iptables -D INPUT -p udp --dport 5060 -j DROP

Repeat this command until no more unwanted rules are left.

1.4.7 Upgrade Notes

16.08

Consult the 16.08 Roadmap

• Some security features have been added to the XiVO provisioning server. To benefit from these new features,
you’ll need to update your xivo-provd plugins to meet the system requirements.

If you have many phones that are connected to your XiVO through a NAT equipment, you should review
the default configuration to make sure that the IP address of your NAT equipment don’t get banned uninten-
tionally by your XiVO.

• Newly created groups and queues now ignore call forward requests from members by default. Previously,
call forward requests from members were always followed. This only applies to call forward configured
directly on the member’s phone: call forward configured via *21 have always been ignored in these cases.

Note that during the upgrade, the previous behaviour is kept for already existing queues and groups.

This behaviour is now configurable per queue/group, via the “Ignore call forward requests from members”
option under the “Application” tab. We recommend enabling this option.

16.07

Consult the 16.07 Roadmap

• If you were affected by the bug #6213, i.e. if your agent login time statistics were incorrect since your
upgrade to XiVO 15.20 or later, and you want to fix your statistics for that period of time, you’ll need to
manually apply a fix.

16.06

Consult the 16.06 Roadmap

1.4. Upgrading 19

https://projects.xivo.io/versions/244
https://projects.xivo.io/versions/243
http://projects.xivo.io/issues/6213
http://projects.xivo.io/issues/6213#note-3
https://projects.xivo.io/versions/242

XiVO Documentation, Release 16.08

16.05

Consult the 16.05 Roadmap

• The view, add, edit, delete and deleteall actions of the “lines” web service provided by the web
interface have been removed. As a reminder, note that the web services provided by the web interface are
deprecated.

16.04

Consult the 16.04 Roadmap

• CTI Protocol is now in version 2.1

• The field Rightcall Code from Services -> IPBX -> IPBX Settings -> Users under Services tab will overwrite
all password call permissions for the user.

• Faxes stored on FTP servers are now converted to PDF by default. See Using the FTP backend if you want
to keep the old behavior of storing faxes as TIFF files.

16.03

Consult the 16.03 Roadmap

• The new section Services → Statistics → Switchboard in the web interface will only be visible by a non-root
administrator after adding the corresponding permissions in the administrator configuration.

• Update the switchboard configuration page for the statistics in Configuration for multiple switchboards.

• The API for associating a line to a device has been replaced. Consult the xivo-confd REST API changelog
for further details

• The configuration parameters of xivo_ldap_user plugin of xivo-auth has been changed. See xivo_ldap
plugin.

• The user’s email is now a unique constraint. Every duplicate email will be deleted during the migration.
(This does not apply to the voicemail’s email)

16.02

Consult the 16.02 Roadmap

• The experimental xivo_ldap_voicemail plugin of xivo-auth has been removed. Use the new xivo_ldap plu-
gin.

• Bus messages in the xivo exchange are now sent with the content-type application/json. Some libraries
already do the message conversion based the content-type. Kombu users will receive a python dictionnary
instead of a string containing json when a message is received.

• xivo-ctid encryption is automatically switched on for every XiVO server and XiVO Client >= 16.02. If you
really don’t want encryption, you must disable it manually on the server after the upgrade. In that case,
XiVO Clients will ask whether to accept the connection the first time.

16.01

Consult the 16.01 Roadmap

• The page Configuration → Management → Web Services Access → Acces rights has been removed. Con-
sequently, every Web Services Access has now all access rights on the web services provided by the web
interface. These web services are deprecated and will be removed soon.

20 Chapter 1. Table of Contents

https://projects.xivo.io/versions/241
https://projects.xivo.io/versions/240
https://projects.xivo.io/versions/239
https://projects.xivo.io/versions/238
https://projects.xivo.io/versions/237

XiVO Documentation, Release 16.08

• During the upgrade, if no CA certificates were trusted at the system level, all the CA certificates from the ca-
certificates package will be added. This is done to resolve an issue with installations from the ISO and PXE.
In the (rare) case you manually configured the ca-certificates package to trust no CA certificates at all, you’ll
need to manually reconfigure it via dpkg-reconfigure ca-certificates after the upgrade.

• xivo-ctid uses xivo-auth to authenticate users. See Authentication.

• the service_discovery section of the xivo-ctid configuration has changed. If you have set up Contact and
Presence Sharing, you should update your xivo-ctid configuration.

• the CTI Protocol is now versioned and a message will be displayed if the server and a client have incompat-
ible protocol versions.

15.20

Consult the 15.20 Roadmap

• Debian has been upgraded from version 7 (wheezy) to 8 (jessie).

• CSV webservices in the web interface have been removed. Please use the xivo-confd REST API instead.

• The CSV import format has been changed. Consult CSV Migration for further details.

• xivo-ctid now uses STARTTLS for the client connections.

– For users already using the CTIS protocol the client can be configured to use the default port (5003)

Please consult the following detailed upgrade notes for more information:

Debian 8 (jessie) Upgrade Notes

The upgrade to XiVO 15.20 or later will take longer than usual, because the whole Debian system will be upgraded.

The database management system (postgresql) will also be upgraded from version 9.1 to version 9.4 at the same
time. This will upgrade the database used by XiVO. This operation should take at most a few minutes.

After the upgrade, the system will need to be rebooted.

Before the upgrade

• If you are upgrading from XiVO 13.24 or earlier, you’ll need to first upgrade to Debian 7 (wheezy) before
being able to upgrade to Debian 8 (jessie). To do so, you’ll have to:

– Run xivo-upgrade a first time, which will upgrade your XiVO to version 15.19 (Debian 7)

– Reboot your system

– Run xivo-upgrade a second time, which will upgrade your XiVO to the latest version (Debian 8)

– Reboot your system

Consult the Debian 7 (wheezy) Upgrade Notes for more information on the first upgrade.

• Make sure your have sufficient space for the upgrade. You might run into trouble if you have less than 2
GiB available in the file system that holds the /var and / directories.

• If you have customized the Debian system of your XiVO in some nontrivial way, you might want to review
the official Debian release notes before the upgrade. Most importantly, you should:

– Make sure you don’t have any unofficial sources in your /etc/apt/sources.list or /etc/apt/sources.list.d
directory. If you were using the wheezy-backports source, you must remove it.

– Remove packages that were automatically installed and are not needed anymore, by running apt-get
autoremove --purge.

1.4. Upgrading 21

https://projects.xivo.io/versions/214
https://www.debian.org/releases/jessie/releasenotes

XiVO Documentation, Release 16.08

– Purge removed packages. You can see the list of packages in this state by running dpkg -l | awk
’/^rc/ { print $2 }’ and purge all of them with apt-get purge $(dpkg -l | awk
’/^rc/ { print $2 }’)

– Remove .dpkg-old, .dpkg-dist and .dpkg-new files from previous upgrade. You
can see a list of these files by running find /etc -name ’*.dpkg-old’ -o -name
’*.dpkg-dist’ -o -name ’*.dpkg-new’.

After the upgrade

• Check that customization to your configuration files is still effective.

During the upgrade, new version of configuration files are going to be installed, and these might over-
ride your local customization. For example, the vim package provides a new /etc/vim/vimrc
file. If you have customized this file, after the upgrade you’ll have both a /etc/vim/vimrc and
/etc/vim/vimrc.dpkg-old file, the former containing the new version of the file shipped by the
vim package while the later is your customized version. You should merge back your customization into
the new file, then delete the .dpkg-old file.

You can see a list of affected files by running find /etc -name ’*.dpkg-old’. If some files shows
up that you didn’t modify by yourself, you can ignore them.

• Purge removed packages. You can see the list of packages in this state by running dpkg -l |
awk ’/^rc/ { print $2 }’ and purge all of them with apt-get purge $(dpkg -l | awk
’/^rc/ { print $2 }’)

• If you had customizations in one of these files:

– /etc/default/asterisk

– /etc/default/consul

– /etc/default/xivo-ctid

Then you’ll need to review your customizations to make sure they still work with systemd. This is necessary
since these 3 files aren’t read under systemd.

For /etc/default/asterisk, only the CONFD_* options are automatically migrated to
/etc/systemd/system/asterisk.service.d/auto-sysv-migration.conf.

For /etc/default/consul, only the WAIT_FOR_LEADER and CONFIG_DIR options are automati-
cally migrated to /etc/systemd/system/consul.service.d/auto-sysv-migration.conf.

For /etc/default/xivo-ctid, only the XIVO_CTID_AMI_PROXY option is automatically mi-
grated to /etc/systemd/system/xivo-ctid.service.d/auto-sysv-migration.conf.

• Reboot your system. It is necessary for the upgrade to the Linux kernel and init system (systemd) to be
effective.

Changes Here’s a non-exhaustive list of changes that comes with XiVO on Debian 8:

• In Debian 7, the halt command powered off the machine. In Debian 8, the command halts the system,
but does not power off the machine. To halt the machine and turn it off, use the poweroff or shutdown
command.

• With the init system switch from SysV to systemd, you should now use the systemctl command to man-
age services (i.e. start/stop/status) instead of the service command or /etc/init.d/<service>,
although these two methods should still work fine.

If you are new to systemd, you can find some basic usage on the systemd page of the Debian Wiki.

• The bootlogd package is not installed by default anymore, since it is not needed with systemd. If you want
to see the boot messages, use the journalctl -b command instead.

• The virtual terminals (tty1 to tty6) now shows up earlier during the boot, before all services have been
started.

22 Chapter 1. Table of Contents

https://wiki.debian.org/systemd#Managing_services_with_systemd

XiVO Documentation, Release 16.08

• The way the ami-proxy is configured for xivo-ctid has changed. If your XiVO was using the ami-proxy, the
configuration will be automatically upgraded.

• Customization to asterisk and consul startup is now done by customizing the systemd unit file
(by creating a drop-in file for example) instead of editing the /etc/default/asterisk and
/etc/default/consul files. These files are not used anymore.

List of Known Bugs And Limitations

• If your system is using a swap partition or file and is using more memory than it can fit in the RAM, then
system power-off or reboot might hangs indefinitely. This is due to a limitation in the current systemd
version.

If you find yourself in this case, you should try allocating more RAM to your system. Otherwise, you can
try stopping the xivo services using xivo-service stop before rebooting to lessen the likelihood of
this problem.

See http://projects.xivo.io/issues/6016

External Links

• Official Debian 8 release notes

CSV Migration

This page describes how to migrate CSV files from the legacy format to the new format. Consult the API docu-
mentation on user imports for further details.

CSV Data

• Only data encoded as UTF-8 will be accepted

• The pipe delimiter (|) has been replaced by a comma (,)

• Double-quotes (") must be escaped by writing them twice (e.g Robert ""Bob"" Jenkins)

Field names Fields have been renamed in the new CSV format. Use the following table to rename your fields.
Fields marked as N/A are no longer supported.

Old name New name
entityid entity_id
firstname firstname
lastname lastname
language language
outcallerid outgoing_caller_id
mobilephonenumber mobile_phone_number
agentnumber N/A
bosssecretary N/A
callerid N/A
enablehint supervision_enabled
enablexfer call_transfer_enabled
enableclient cti_profile_enabled
profileclient cti_profile_name
username username
password password
phonenumber exten
context context

Continued on next page

1.4. Upgrading 23

http://projects.xivo.io/issues/6016
https://www.debian.org/releases/jessie/releasenotes
http://api.xivo.io
http://api.xivo.io

XiVO Documentation, Release 16.08

Table 1.1 – continued from previous page
Old name New name

protocol line_protocol
linename sip_username
linesecret sip_secret

incallexten incall_exten
incallcontext incall_context
incallringseconds incall_ring_seconds
voicemailname voicemail_name
voicemailnumber voicemail_number
voicemailcontext voicemail_context
voicemailpassword voicemail_password
voicemailemail voicemail_email
voicemailattach voicemail_attach_audio
voicemaildelete voicemail_delete_messages
voicemailaskpassword voicemail_ask_password

15.19

Consult the 15.19 Roadmap

• The sound file /usr/share/asterisk/sounds/fr_FR/une.wav has been moved to
/usr/share/asterisk/sounds/fr_FR/digits/1F.wav.

• If you would like to use the new “transfer to voicemail” feature from the People Xlet, you’ll need to update
your directory definition and your directory display, i.e.:

– edit your “internal” directory definition (Services / CTI server / Directories / Definitions) and add a
field “voicemail” with value “voicemail_number”

– edit your display (Services / CTI server / Directories / Display filters) and add a row with title “Voice-
mail”, field type “voicemail” and field name “voicemail”

– restart xivo-dird

• It is now possible to send an email to a user with a configured email address in the people xlet. See Views
to add the appropriate field to your configured displays.

• The Contacts xlet (aka. Search) has been removed in favor of the People Xlet. You may need to do some
manual configuration in the directories for the People Xlet to be fully functional. See the detailed upgrade
notes for more details.

• If you need context separation in the People Xlet, you will have to manually configure xivo-dird to keep
it working, see Context separation. This procedure is only temporary, later versions will handle the context
separation automatically.

• xivo-agentd now uses mandatory token authentication for its REST API. If you have custom development
using this service, update your program accordingly.

• Some actions that used to be available in the contact xlets are not implemented in the people xlet yet.

– Cancel transfer is only available using the switchboard xlet

– Hanging up a call is only possible using the switchboard xlet

– Call interception is not available anymore

– Conference room invitation is not available anymore

Please consult the following detailed upgrade notes for more information:

24 Chapter 1. Table of Contents

https://projects.xivo.io/versions/236
http://projects.xivo.io/issues/5905

XiVO Documentation, Release 16.08

People Xlet features Upgrade Notes

When upgrading your XiVO to 15.19, there are some features in the directories that could not be upgraded auto-
matically, because it risked breaking some manual configurations.

After you upgrade your XiVO, your CTI displays in Services → CTI Server → Directories → Displays may look
like this:

You should update your displays to make them look like:

This will give you a Xlet People looking like this:

You can find more details about the field types in Integration of XiVO dird with the rest of XiVO.

Context separation

Without context separation, you only need one contact source for all the users of your XiVO.

However, if you need context separation, each context is considered as a separate independant source of contacts,
each with a different context filter. For this, you need:

• one contact source per context (a file in /etc/xivo-dird/sources.d), so that we have a source
containing only the contacts from one context

• one profile per context (equivalent to Services → CTI Server → Directories → Direct directories) so that
users in one context only see people from the same context.

1.4. Upgrading 25

XiVO Documentation, Release 16.08

26 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Each source should look like this one, e.g. the context is named INSIDE:

confd_config:
host: localhost
https: false
port: 9487
timeout: 4
verify_certificate: false
version: '1.1'

first_matched_columns: [exten]
format_columns:

directory: "R\xE9pertoire XiVO Interne"
location: '{description}'
mobile: '{mobile_phone_number}'
name: '{firstname} {lastname}'
number: '{exten}'
sda: '{userfield}'
voicemail: '{voicemail_number}'

searched_columns: [firstname, lastname, userfield, description]
type: xivo
unique_column: id
name: internal_INSIDE # <--- each source has a different name, one per context
extra_search_params:

context: INSIDE # <--- each source filters users according to one context

The parameters in this file have the same effect than Configuration → Directories and Services → CTI Server →
Directories → Direct directories put together.

You may generate these config files from xivo-confgen dird/sources.yml. Be sure to have name and
extra_search_params correct for each source file.

Now that we have our contact sources, we need our search profiles.

Create a new file to override the profiles generated by xivo-confgen. You only need one file, which will define all
your profiles at once.

xivo-confgen dird/services.yml >> /etc/xivo-dird/conf.d/001-context-separation.yml

In this file, there is a list of services (favorites, lookup, ...) where each profile has a set of sources. You need to
match one profile to the right internal source for each service. For example, to have context separation between
contexts INSIDE and INDOORS:

services:
favorites:
__default_phone:

sources: [xivodir, internal, ldaptest, personal]
__switchboard_directory:

sources: [xivodir, ldaptest, personal]
INSIDE:

sources: [xivodir, internal_INSIDE, ldaptest, personal] # <--- profile INSIDE uses the source internal_INSIDE
INDOORS:

sources: [xivodir, internal_INDOORS, ldaptest, personal] # <--- profile INDOORS uses the source internal_INDOORS
lookup:
__default_phone:

sources: [xivodir, internal, ldaptest, personal]
__switchboard_directory:

sources: [xivodir, ldaptest, personal]
INSIDE:

sources: [xivodir, internal_INSIDE, ldaptest, personal] # <--- same HERE
INDOORS:

sources: [xivodir, internal_INDOORS, ldaptest, personal] # <--- and HERE

1.4. Upgrading 27

XiVO Documentation, Release 16.08

15.18

Consult the 15.18 Roadmap

• The provd_pycli command (deprecated in 15.06) has been removed in favor of xivo-provd-cli. If you have
custom scripts referencing provd_pycli, you’ll need to update them.

• The xivo-agentctl command (deprecated in 15.06) has been removed in favor of xivo-agentd-cli. If you have
custom scripts referencing xivo-agentctl, you’ll need to update them.

• xivo-agentd now uses HTTPS. If you have custom development using this service, update your configuration
accordingly. The xivo-agentd-client library, used to interact with xivo-agentd, has also been updated to use
HTTPS by default.

• xivo-confd ports 50050 and 50051 have been removed. Please use 9486 and 9487 instead

Configuration File Upgrade Notes

The file format of configuration files for daemons exposing an HTTP/S API has changed. The following services
have been affected :

• xivo-agentd

• xivo-amid

• xivo-auth

• xivo-confd

• xivo-ctid

• xivo-dird

• xivo-dird-phoned

Ports and listening addresses are now organised in the following fashion:

rest_api:
https:
enabled: true
port: 9486
listen: 0.0.0.0
certificate: /usr/share/xivo-certs/server.crt
private_key: /usr/share/xivo-certs/server.key
ciphers: "ALL:!aNULL:!eNULL:!LOW:!EXP:!RC4:!3DES:!SEED:+HIGH:+MEDIUM"

http:
enabled: true
port: 9487
listen: 127.0.0.1

If you have any custom configuration files for these daemons, please modify them accordingly. Consult Network
for further details on which network services are available for each daemon.

15.17

Consult the 15.17 Roadmap

• Online call recording is now done via automixmon instead of automon. This has no impact unless you have
custom dialplan that is passing directly the “w” or “W” option to the Dial or Queue application. In these
cases, you should modify your dialplan to pass the “x” or “X” option instead.

• The remote directory service available from supported phones is now provided by the new unified directory
service, i.e. xivo-dird. Additional upgrade steps are required to get the full benefit of the new directory
service; see the detailed upgrade notes.

• The field enableautomon has been renamed to enableonlinerec in the users web services provided
by the web-interface (these web services are deprecated).

28 Chapter 1. Table of Contents

https://projects.xivo.io/versions/234
https://projects.xivo.io/versions/233
https://wiki.asterisk.org/wiki/display/AST/One-Touch+Features

XiVO Documentation, Release 16.08

• The agent status dashboard now shows that an agent is calling or receiving a non ACD call while in wrapup
or paused.

• SIP endpoints created through the REST API will not appear in the web interface until they have been
associated with a line

• Due to limitations in the database, only a limited number of optional parameters can be configured on a SIP
endpoint. Consult the xivo-confd REST API changelog for further details

Please consult the following detailed upgrade notes for more information:

Phone Remote Directory Upgrade Notes

If you are not using the remote directory from your phones, you can safely skip this page.

Starting from XiVO 15.17, the remote directory used by the phones is now provided by the new directory service,
composed principally of xivo-dird and xivo-dird-phoned. It was previously provided by the XiVO web interface.

This brings a few changes for the administrators, the biggest one being that lookup from both the XiVO client
and phones are now configured at the same place, namely the (incorrectly named) Services → CTI Server →
Directories section, with some advanced configuration only available in the configuration files. This means that
lookup from the phones can now also display results from CSV or web services directories. For details on how to
configure directories, refer to the Directories page.

For users, the biggest change is that they can now consult their personal contacts (that they added from their XiVO
client) when doing a search from their phone.

Changes

Web Interface - LDAP Filters The following options have been removed from the web interface, in the Services
→ IPBX → LDAP filters page:

• the Phone number type field

• the Attributes tab

The phone number type is now configurable on a per source basis (and for all type of source, not just
LDAP), in Services → CTI Server → Directories. For example, if you have LDAP records with the at-
tribute telephoneNumber that you want to be displayed on your phone with the suffix “(Office)”, just
make sure that your directory definition is configured with a field named phone_office with the value
{telephoneNumber}.

By default, the following fields are available:

• phone: doesn’t add a suffix

• phone_office: add a “(Office)” suffix

• phone_mobile: add a “(Mobile)” suffix

• phone_home: add a “(Home)” suffix

• phone_other: add a “(Other)” suffix

Note: These fields will automatically be added in your LDAP directory definitions during the upgrade, so you
may only need to review your directory configuration.

This list of fields and the suffix associated to it is currently only configurable in the xivo-dird configuration files,
in the views/displays_phone section.

This is causing 2 functional changes:

1.4. Upgrading 29

XiVO Documentation, Release 16.08

• Previously, the suffix displayed was translated in function of the phone’s language. This is not possible
anymore, and you’ll have to edit the configuration files if you want the suffix to be in a different language
than english.

• For “custom” phone number type, you’ll have to add a new entry in the configuration files and add the
correspond field in the directory definition.

In XiVO 15.16, the Attributes tab would allow a “fallback” mechanism, where if an LDAP attribute for a
record was missing/empty, another attribute would be used. In XiVO 15.17, this mechanism is available (for all
type of sources) by mapping the first attribute to a field name phone, the second to a field name phone1, etc.
The fallback mechanism is available on the fields phone, phone_office, phone_mobile, phone_home,
phone_other and display_name.

Web Interface - Phonebook The following options have been removed from the web interface, in the Services
→ IPBX → Phonebook page:

• the LDAP filters tab

LDAP sources used for lookup from the phone are now selected in the same place as for the XiVO client, i.e. in
Services → CTI Services → Direct directories. A consequence of that is that it’s not possible anymore to have
sources only used for lookup from phone and other sources only used for lookup from the XiVO client.

Note: The LDAP filters that were used for phone lookup will be automatically added to all the profiles during the
upgrade.

Additional Upgrade Steps After upgrading your XiVO to 15.17 or later, you should do the following steps.

Upgrade Your Provisioning Plugins This step is optional, although strongly recommended.

For the users to be able to search their personal contacts from their phone, the phone configuration needs to be
updated. This means:

1. Installing new xivo-provd plugins or upgrading existing plugins

2. Restarting all affected phones

See the provisioning section for more information on installing or upgrading plugins.

Here’s the list of plugins which have received modifications to be compatible with the new directory service:

Name Version
xivo-aastra-3.3.1-SP4 1.5
xivo-aastra-4.1.0 1.5
xivo-cisco-sccp-9.0.3 0.8
xivo-cisco-sccp-cipc-2.1.2 0.8
xivo-cisco-sccp-legacy 0.8
xivo-cisco-sccp-wireless-1.4.5 0.8
xivo-cisco-spa-7.5.5 0.12
xivo-cisco-spa-legacy 0.12
xivo-polycom-4.0.4 1.4
xivo-polycom-5.3.0 1.5
xivo-snom-8.7.5.17 1.5
xivo-technicolor-ST2022-4.78-1 0.4
xivo-technicolor-ST2030-2.74 0.3
xivo-technicolor-TB30-1.74.0 0.3
xivo-yealink-v70 1.24
xivo-yealink-v72 1.24
xivo-yealink-v73 1.24
xivo-yealink-v80 1.24

30 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Plugins with greater version number or greater firmware-version number are also compatible.

If the xivo-provd plugins are not updated or the phone are not rebooted, the user will by default only be able to
search in the “internal” and “xivodir” directory definitions. If you want to add or remove sources for these phones,
you’ll need to edit xivo-dird configuration files. More precisely, you’ll need to edit the sources associated to the
profile named default_phone.

Update Your Firewall Rules If there’s a firewall (or a NAT equipement) between your XiVO and your phones,
you must know that the port used for the directory lookup from the phone has changed from port TCP/80 to port
TCP/9498. The new port is going to be used only by phones which are using a compatible plugins (see list above)
and have been rebooted; otherwise, the port TCP/80 will still be used.

Review Your Directory Configuration During the upgrade, new LDAP directory definitions might be created
and fields to existing one might be added.

For example, if you had an LDAP filter which was used for directory lookup from your phones, then a corre-
sponding LDAP directory definition will be created if nonexistent, and otherwise be updated to make sure the
display_name and phone_office (or another field, depending on the phone number type of your LDAP
filter) fields are defined. The directory definition will also be added to all the direct directories entries, i.e. added
to all items in the Services → CTI Server → Direct directories page.

If you were using LDAP filters with custom phone number types, the custom part will be lost, and to get back the
same behaviour, you’ll need to modify xivo-dird configuration files and update the field’s name in your directory
definition.

Also, if you have other directory defintions that you now want to use from your phones (e.g. CSV directories),
make sure that their configuration is working, i.e. that they have a display_name and phone fields. During
the upgrade, these fields are automatically added to the directory defintion “xivodir”, “internal” and for LDAP
source, like described above.

15.16

Consult the 15.16 Roadmap

• The directory column type “mobile” was removed in favor of the new “callable” type. If you have hand-
written configuration files for xivo-dird, in section “views”, subsection “displays”, all keys “type” with value
“mobile” must be changed to value “callable”.

• The xivo-auth backend interface has changed, get_acls is now get_consul_acls. All unofficial
back ends must be adapted and updated. No action is required for “normal” installations.

• Voicemails can now be deleted even if they are associated to a user.

15.15

Consult the 15.15 Roadmap

Voicemail Upgrade Notes

• Voicemail webservices in the web interface have been removed. Please use the xivo-confd REST API instead.

• Voicemail IMAP configuration has been migrated to the new Advanced tab.

• Voicemail option Disable password checking has been converted to Ask password. The value
has also been inverted. (e.g. If Disable password checking was false, Ask password is true.)
Ask password is activated by default.

• After an upgrade, if ever you have errors when searching for voicemails, please try clearing cookies in your
web browser.

1.4. Upgrading 31

https://projects.xivo.io/versions/232
https://projects.xivo.io/versions/231

XiVO Documentation, Release 16.08

• A voicemail must be dissociated from any user prior to being deleted. Voicemail are dissociated by editing
the user and clicking on the Delete voicemail button in the Voicemail tab. This constraint will
disappear in future versions.

• Deleting a user will dissociate any voicemail that was attached, but will not delete it nor any messages.

• Creating a line is no longer necessary when attaching a voicemail to a user.

• The following fields have been modified when importing a CSV file:

Old name New name Required ? New default value
voicemailmailbox voicemailnumber yes
voicemailskippass voicemailaskpassword no 1

voicemailcontext yes

Directories

• Concatenated fields in directories are now done in the directory definitions instead of the displays

• The field column in directory displays are now field names from the directory definition. No more {db-*}
are required

• In the directory definitions fields can be modified using a python format string with the fields comming from
the source.

• Most of the configuration for xivo-dird is now generated from xivo-confgen using the values in the web
interface.

• The remote directory xlet has been removed in favor of the new people xlet.

See Directories and Integration of XiVO dird with the rest of XiVO for more details

15.14

• Consult the 15.14 Roadmap

• Default password for xivo-polycom-4.0.4 plugin version >= 1.3 is now 9486 (i.e. the word “xivo”
on a telephone keypad).

• Default password for xivo-polycom-5.3.0 plugin version >= 1.4 is now 9486.

• Caller id management for users in confd has changed. Consult the xivo-confd REST API changelog.

• The Local Directory Xlet is replaced with the People Xlet. Contacts are automatically migrated to the server.
Note that the CSV format for importing contacts has changed (see People Xlet for more information).

15.13

• Consult the 15.13 Roadmap

• Asterisk has been upgraded from version 11.17.1 to 13.4.0, which is a major Asterisk upgrade.

• An ARI user has been added to /etc/asterisk/ari.conf. If you have configured Asterisk HTTP
server to bind on a publicly reachable address (in /etc/asterisk/http.conf), then you should up-
date your configuration to prevent unauthorized access on your Asterisk.

• The xivo-dird configuration option source_to_display_columns has been removed in favor of the new op-
tion format_columns. All source configuration using the source_to_display_columns must be updated. A
migration script will automatically modify source configuration in the /etc/xivo-dird/sources.d directory.

Please consult the following detailed upgrade notes for more information:

32 Chapter 1. Table of Contents

https://projects.xivo.io/versions/230
https://projects.xivo.io/versions/229
https://wiki.asterisk.org/wiki/display/AST/Getting+Started+with+ARI

XiVO Documentation, Release 16.08

Asterisk 11 to 13 Upgrade Notes

You might be impacted by the upgrade to Asterisk 13 if you have:

• custom dialplan

• custom Asterisk configuration

• custom application using AGI, AMI or any other Asterisk interface

• custom application exploiting CEL or queue_log

• custom Asterisk modules (e.g. codec_g729a.so)

• customized Asterisk in some other way

• DAHDI trunks using SS7 signaling

If you find yourself in one of these cases, you should make sure that your customizations still work with Asterisk
13.

If you are upgrading from Asterisk 1.8, you should also check the Asterisk 1.8 to 11 upgrade notes.

Changes Between Asterisk 11 and 13 Some of the more common changes to look for:

• SS7 support has been removed from the Asterisk package of XiVO.

• All channel and global variable names are evaluated in a case-sensitive manner. In previous versions of As-
terisk, variables created and evaluated in the dialplan were evaluated case-insensitively, but built-in variables
and variable evaluation done internally within Asterisk was done case-sensitively.

• The SetMusicOnHold dialplan application was deprecated and has been removed. Users of the application
should use the CHANNEL function’s musicclass setting instead.

• The WaitMusicOnHold dialplan application was deprecated and has been removed. Users of the application
should use MusicOnHold with a duration parameter instead.

• The SIPPEER dialplan function no longer supports using a colon as a delimiter for parameters. The param-
eters for the function should be delimited using a comma.

• The SIPCHANINFO dialplan function was deprecated and has been removed. Users of the function should
use the CHANNEL function instead.

• For SIP, the codec preference order in an SDP during an offer is slightly different than previous releases.
Prior to Asterisk 13, the preference order of codecs used to be:

1. Our preferred codec

2. Our configured codecs

3. Any non-audio joint codecs

Now, in Asterisk 13, the preference order of codecs is:

1. Our preferred codec

2. Any joint codecs offered by the inbound offer

3. All other codecs that are not the preferred codec and not a joint codec offered by the inbound offer

• Queue strategy rrmemory (Round robin memory) now has a predictable order. Members will be called in
the order that they are added to the queue. For agents, this means they will be called in the order they are
logged.

• When performing queue pause/unpause on an interface without specifying an individual queue, the PAUSE-
ALL/UNPAUSEALL event will only be logged if at least one member of any queue exists for that interface.
This has an impact on the agent performance statistics; an agent must be a member of at least 1 queue for
its pause time to show up in the statistics.

You can see the complete list of changes from the Asterisk website:

1.4. Upgrading 33

XiVO Documentation, Release 16.08

• https://wiki.asterisk.org/wiki/display/AST/Upgrading+to+Asterisk+12

• https://wiki.asterisk.org/wiki/display/AST/Upgrading+to+Asterisk+13

• http://git.asterisk.org/gitweb/?p=asterisk/asterisk.git;a=blob;f=CHANGES;h=d0363f7c3b03cec5f71b3806535c4f9d2b2baa02;hb=refs/heads/13

The AGI protocol did not change between Asterisk 11 and Asterisk 13; if you have custom AGI applications, you
only need to make sure that the dialplan applications and functions you are using from the AGI are still valid.

List of Known Bugs And Limitations List of known bugs and limitations for Asterisk 13 in XiVO:

• When direct media is active and DTMF are sent using SIP INFO, DTMF are not working properly. It is also
impossible to do an attended transfer from the XiVO client in these conditions.

See http://projects.xivo.io/issues/5692.

• There’s a small memory leak occurring on certain call scenarios (mostly call center scenarios); you should
check the memory usage of your asterisk process once per month and do a xivo-service restart
when the memory usage grows too large.

See http://projects.xivo.io/issues/5694.

15.12

• Consult the 15.12 Roadmap

• The certificate used for HTTPS in the web interface will be regenerated if the default certificate was used.
Your browser will complain about the new certificate, and it is safe to accept it (see #3656). See also HTTPS
certificate.

• If you have an HA configuration, then you should run xivo-sync -i on the master node to setup file
synchronization between the master and the slave. File synchronization will then be done automatically
every hour via rsync and ssh.

• xivo-auth and xivo-dird now use HTTPS, if you have custom development using these services, update your
configuration accordingly.

15.11

• Consult the 15.11 Roadmap

• The call records older than 365 days will be periodically removed. The first automatic purge will occur in
the night after the upgrade. See Purge Logs for more details.

15.10

• Consult the 15.10 Roadmap

15.09

• Consult the 15.09 Roadmap

15.08

• Consult the 15.08 Roadmap

• The Dialer Xlet has been integrated in Identity Xlet.

34 Chapter 1. Table of Contents

https://wiki.asterisk.org/wiki/display/AST/Upgrading+to+Asterisk+12
https://wiki.asterisk.org/wiki/display/AST/Upgrading+to+Asterisk+13
http://git.asterisk.org/gitweb/?p=asterisk/asterisk.git;a=blob;f=CHANGES;h=d0363f7c3b03cec5f71b3806535c4f9d2b2baa02;hb=refs/heads/13
http://projects.xivo.io/issues/5692
http://projects.xivo.io/issues/5694
https://projects.xivo.io/versions/228
http://projects.xivo.io/issues/5636
https://projects.xivo.io/versions/227
https://projects.xivo.io/versions/223
https://projects.xivo.io/versions/226
https://projects.xivo.io/versions/225

XiVO Documentation, Release 16.08

15.07

• Consult the 15.07 Roadmap

15.06

• Consult the 15.06 Roadmap

• The provd client has been moved into a new python package, xivo_provd_client. If you have custom scripts
using this client, you’ll need to update them. See http://projects.xivo.io/issues/5469 for more information.

• The provd_pycli command name has been deprecated in favor of xivo-provd-cli. These 2 commands do the
same thing, the only difference being the name of the command. The provd_pycli command name will be
removed in 15.18, so if you have custom scripts referencing provd_pycli, you’ll need to update them.

• The xivo-agentctl command name has been deprecated in favor of xivo-agentd-cli. These 2 commands do
the same thing, the only difference being the name of the command. The xivo-agentctl command name will
be removed in 15.18, so if you have custom scripts referencing xivo-agentctl, you’ll need to update them.

15.05

• Consult the 15.05 Roadmap

• The Xlet identity has been modified to follow the new XiVO Client design which implies the removal of
some details.

15.04

• Consult the 15.04 Roadmap

15.03

• Consult the 15.03 Roadmap

15.02

• Consult the 15.02 Roadmap

15.01

• Consult the 15.01 Roadmap

• The confd REST API is now more restrictive on HTTP headers. Particularly, the headers Accept and
Content-Type must be set to (typically) application/json.

• The following configuration files have been created:

– /etc/xivo-agid/config.yml

– /etc/xivo-call-logd/config.yml

– /etc/xivo-amid/config.yml

– /etc/xivo-agentd/config.yml

1.4. Upgrading 35

https://projects.xivo.io/versions/224
https://projects.xivo.io/versions/222
http://projects.xivo.io/issues/5469
https://projects.xivo.io/versions/221
https://projects.xivo.io/versions/220
https://projects.xivo.io/versions/219
https://projects.xivo.io/versions/218
https://projects.xivo.io/versions/217

XiVO Documentation, Release 16.08

Archives

Archived Upgrade Notes

2014

14.24

• Consult the 14.24 Roadmap

The following security vulnerability has been fixed:

• XIVO-2014-01: Queues and groups permit callers to make unwanted calls

14.23

• Consult the 14.23 Roadmap

• The “waiting calls / logged agents ratio” queue diversion scenario has been renamed to “number of waiting
calls per logged agents”.

• A new community section was added to the official documentation for all user-contributed documentation.

14.22

• Consult the 14.22 Roadmap

• The sheet event Dial on queues is now only sent to the ringing agent. The sheet is also sent a little later
during the call, when the ringing agent is known.

14.21

• Consult the 14.21 Roadmap

• The confd REST API is now accessible via HTTPS on port 9486 and via HTTP on port 9487 (localhost
only). These ports are replacing the 50051 and 50050 ports respectively. It will still be possible to access
the confd REST API via the 50051 and 50050 ports for the next year, but you are advised to update your
confd REST API clients as soon as possible.

• The old (unsupported) ami-proxy is now replaced by an ami-proxy built in xivo-ctid. You must uninstall the
old ami-proxy before activating the built-in version. See troubleshooting xivo-ctid to learn how to activate.

14.20

• Consult the 14.20 Roadmap

• Default parameters for all Cisco SPA ATA plugins have changed to be better suited for european faxes.

• Following the POODLE attack (CVE-2014-3566), SSL 3.0 has been disabled for the web interface and the
xivo-confd REST API.

If you have Aastra phones and are using the remote directory on them, consult the following detailed upgrade
notes:

Aastra Remote Directory Upgrade Notes Starting from XiVO 14.20, it is not possible anymore to use SSL 3.0
when connecting to XiVO using HTTPS.

This has the unfortunate consequence of breaking the remote directory on Aastra phones configured by the
xivo-aastra provisioning plugins in version 1.2 and earlier.

36 Chapter 1. Table of Contents

https://projects.xivo.io/versions/216
http://mirror.xivo.io/security/XIVO-2014-01.pdf
https://projects.xivo.io/versions/215
https://projects.xivo.io/versions/213
https://projects.xivo.io/versions/212
https://github.com/xivo-pbx/xivo-tools/tree/master/ami-proxy
https://github.com/xivo-pbx/xivo-tools/tree/master/ami-proxy
https://projects.xivo.io/versions/211
https://www.openssl.org/~bodo/ssl-poodle.pdf

XiVO Documentation, Release 16.08

Upgrade procedure To be able to use the remote directory on your Aastra phones on XiVO 14.20 or later, you’ll
need to take one of the following actions:

Upgrade to the Latest Plugin This is the recommended solution. This can be done either before or after the
upgrade. You’ll have to:

1. Upgrade your xivo-aastra plugin to version 1.3 or later

2. Restart/synchronize all your phones

The correction is only available for plugin xivo-aastra-3.3.1-SP2 and later. If you are using an older
plugin (xivo-aastra-3.2.2-SP3 for example), then you’ll need to install a newer plugin and update all
your phones to use the new plugin.

If you were already using custom templates, make sure to update them so that the phones access the remote
directory via HTTP instead of HTTPS. This can be done using the following command:

find /var/lib/xivo-provd/plugins/xivo-aastra* -name '*.tpl' -exec sed -i '/X_xivo_phonebook_ip/s/\bhttps:/http:/' {} \;

Update the Templates If you can’t or don’t want to update to a newer plugin, you can instead update the
templates used by the plugin. This can be done either before or after the upgrade. You’ll have to:

1. Update the templates so that the directory is accessed via HTTP

2. Restart/synchronize all your phones

In this specific case, it is safe to directly modify the templates used by the plugin instead of creating custom
templates. To update the templates, you can use the following command:

find /var/lib/xivo-provd/plugins/xivo-aastra* -name '*.tpl' -exec sed -i '/X_xivo_phonebook_ip/s/\bhttps:/http:/' {} \;

Re-enable SSL 3.0 If you can’t restart/synchronize your phones, the last solution is to re-enable SSL 3.0 on
your XiVO. This should only be used as a temporary solution to give you more time to plan a firmware upgrade
for your phones. This can be done only after the upgrade. You’ll have to:

1. Update nginx configuration

2. Reload nginx

This can be done using the following commands:

sed -i 's/ssl_protocols .*/ssl_protocols SSLv3 TLSv1 TLSv1.1 TLSv1.2;/' /etc/nginx/sites-available/xivo
service nginx reload

14.19

• Consult the 14.19 Roadmap

14.18

• Consult the 14.18 Roadmap

• xivo-fai packages were replaced with xivo-dist : a new tool to handle repositories sources. Upon upgrade,
xivo-dist is installed and run and all xivo-fai packages are purged. Consult xivo-dist use cases

14.17

• Consult the 14.17 Roadmap

1.4. Upgrading 37

https://projects.xivo.io/versions/210
https://projects.xivo.io/versions/209
https://projects.xivo.io/versions/208

XiVO Documentation, Release 16.08

• DAHDI configuration file /etc/dahdi/modules is no more created by default and must now be main-
tained manually. No action is needed upon upgrade but be aware that the upstream sample file is now
available in /usr/share/dahdi/modules.sample. See dahdi modules documentation for detailed
info.

• The new CCSS feature will not be enabled upon upgrade, you must explicitly enable it in the IPBX → IPBX
Services → Extensions menu.

14.16

• Consult the 14.16 Roadmap

• See the changelog for xivo-confd’s REST API

• DAHDI is upgraded to 2.10.0. If the upgrade process asks about /etc/dahdi/modules, we recommend
that you keep the old version of the file.

• Asterisk now inserts CEL and queue log entries via the ODBC asterisk modules instead of the pgsql mod-
ules.

14.15

• Consult the 14.15 Roadmap

• Duplicate function keys will be deleted upon upgrade. If multiple function keys pointing to the same des-
tination are detected for a given user, only the one with the lowest position will be kept. To see the list of
deleted function keys, check the xivo-upgrade log file such as:

grep MIGRATE_FK /var/log/xivo-upgrade.log

DAHDI 2.9.2 Upgrade Notes These notes only apply to:

• Digium TE133/TE131 cards that are in firmware version 780017 or earlier

• Digium TE435/TE235 cards that are in firmware version e0017 or ealier

Warning: The system will need to be power cycled after the upgrade. Your cards will not be usable until
then.

After the upgrade First, you need to install the latest firmware for your TE133/TE131 or TE435/TE235 cards:

xivo-fetchfw install digium-te133
xivo-fetchfw install digium-te435

Then stop all the services and reload the DAHDI modules. Reloading the DAHDI module might take up to 30
seconds:

xivo-service stop
service dahdi stop
service dahdi start

Following this manipulation, you should see something similar at the end of the /var/log/messages file:

dahdi: Telephony Interface Unloaded
dahdi: Version: 2.9.2
dahdi: Telephony Interface Registered on major 196
wcte13xp 0000:03:0c.0: Firmware version 780017 is running, but we require version 780019.
wcte13xp 0000:03:0c.0: firmware: agent loaded dahdi-fw-te133.bin into memory
wcte13xp 0000:03:0c.0: Found dahdi-fw-te133.bin (version: 780019) Preparing for flash
wcte13xp 0000:03:0c.0: Uploading dahdi-fw-te133.bin. This can take up to 30 seconds.
wcte13xp 0000:03:0c.0: Delaying reset. Firmware load requires a power cycle
wcte13xp 0000:03:0c.0: Running firmware version: 780017

38 Chapter 1. Table of Contents

https://projects.xivo.io/versions/207
https://projects.xivo.io/versions/206

XiVO Documentation, Release 16.08

wcte13xp 0000:03:0c.0: Loaded firmware version: 780019 (Will load after next power cycle)
wcte13xp 0000:03:0c.0: FALC version: 5
wcte13xp 0000:03:0c.0: Setting up global serial parameters for T1
wcte13xp 0000:03:0c.0: VPM450: firmware dahdi-fw-oct6114-032.bin not available from userspace

For the firmware update to complete, you must halt the machine (a reboot won’t be enough) before restarting it.

14.14

• Consult the 14.14 Roadmap

• See the changelog for REST API

• Upon an important freeze of Asterisk, Asterisk will be restarted. See the associated ticket for more infor-
mation.

14.13

• Consult the 14.13 Roadmap

• See the changelog for REST API

• Skills-based routing: for an agent which doesn’t have the skill X, the rule X < 10 was previously evaluated to
true, since not having the skill X was equivalent to having it with a value of 0. This behaviour has changed,
and the same expression is now evaluated to false. If you are using skills-based routing, you’ll need to check
that your rules are still doing what you expect. See skill evaluation for more information.

14.12

• Consult the 14.12 Roadmap

• All provisioning plugins were modified. Although not mandatory, it is strongly advised to update all used
plugins.

• The function key ‘Activate voicemail’ was removed as it was a duplicate of existing function key ‘Enable
voicemail’. All users having the ‘Activate voicemail’ function key will have to be reconfigured with a
‘Enable voicemail’ function key in order to keep the equivalent feature.

• Log files have changed for the following daemons (previously in /var/log/daemon.log):

– xivo-provd: /var/log/xivo-provd.log

– xivo-agid: /var/log/xivo-agid.log

– xivo-sysconfd: /var/log/xivo-sysconfd.log

14.11

• Consult the 14.11 Roadmap

• The API URL /lines/<id>/extension is now deprecated. Use /lines/<id>/extensions
instead.

14.10

• Consult the 14.10 Roadmap

• Custom MOH have been fixed, but can not be used for playing uploaded files anymore. See Music on Hold.

1.4. Upgrading 39

https://projects.xivo.io/versions/205
https://projects.xivo.io/issues/5165
https://projects.xivo.io/versions/204
https://projects.xivo.io/versions/203
https://projects.xivo.io/versions/202
https://projects.xivo.io/versions/201
https://projects.xivo.io/issues/5038

XiVO Documentation, Release 16.08

14.09

• Consult the 14.09 Roadmap

• REST API 1.0 is no more. All code, tests and documentation was removed from XiVO. All code developped
for REST API 1.0 must now be adapted to use REST API 1.1.

14.08

• Consult the 14.08 Roadmap

• The xivo database has been merged into the asterisk database. The database schema has also been
altered in a way that it might make the upgrade longer than usual.

Please consult the following detailed updated notes for more information:

Databases Merge Upgrade Notes The xivo database has been merged into the asterisk database in XiVO
14.08. This has an impact on:

• The restore procedure. There’s only one database to restore now. Also, the procedure to restore the data
while keeping the system configuration has been updated.

• The data that is replicated between the master and the slave in a high availability cluster.

Previously, all the configuration that was under the “Configuration” menu of the web interface was not replicated
between the master and slave. This is now replicated, except for:

• HA settings

• All the network configuration (i.e. everything under the Configuration → Network section)

• All the support configuration (i.e. everything under the Configuration → Support section)

The call center statistics have also been excluded from the replication.

The way the replication is done has also been updated, which makes it faster.

Optional Upgrade Procedure When upgrading to XiVO 14.08, the database schema will be altered.

This will result in a longer upgrade time if you have a lots of rows in the queue_log table.

You can see the number of rows in your queue_log table with:

sudo -u postgres psql -c "SELECT count(*) FROM queue_log" asterisk

On ordinary hardware, you can expect that it will take ~10 minutes for every 2.5 million of rows. So if you have
5 million of rows in your queue_log table, you can expect that the upgrade will take an extra 20 minutes.

It is possible to reduce the amount of additional time the upgrade will take by either removing rows from the table
or altering the table before the upgrade.

Both these commands can be run while the XiVO services are up.

For example, if you want to remove all the rows before march 2014, you can use:

sudo -u postgres psql -c "DELETE FROM queue_log WHERE \"time\" < '2014-03-01'" asterisk

If you want to alter the table before the upgrade, you can use:

sudo -u postgres psql -c "ALTER TABLE queue_log ADD COLUMN id SERIAL PRIMARY KEY; GRANT ALL ON SEQUENCE queue_log_id_seq TO asterisk" asterisk

Note: It is recommended to execute this command when there’s no activity on the system.

40 Chapter 1. Table of Contents

https://projects.xivo.io/versions/200
https://projects.xivo.io/versions/199

XiVO Documentation, Release 16.08

More Technical Information The way the database is initially provisioned and the way it is altered during an
upgrade has also been changed.

In XiVO 14.07 and earlier, the database was provisioned by executing the
/usr/share/xivo-manage-db/datastorage/asterisk.sql SQL script. Starting with XiVO
14.08, the xivo-init-db is responsible for provisioning the database. This script should not be used by an
administrator in normal circumstance.

Starting with XiVO 14.08, database migration are done with the help of alembic instead of the
asterisk-XXX.sql and xivo-XXX.sql scripts. The alembic migration scripts can be found inside the
/usr/share/xivo-manage-db directory.

Otherwise, the xivo-check-db and xivo-update-db commands have been updated to work with both
the old and the new systems and are still the official way to check the database state and update the database
respectively.

14.07

• Consult the 14.07 Roadmap

• Configuration for phones used for the switchboard has changed.

Please consult the following detailed updated notes for more information:

Switchboard Phone Configuration Upgrade Notes The xivo-aastra-switchboard and xivo-snom-switchboard
plugins have been removed and their functionalities are now provided by the generic xivo-aastra and xivo-snom
plugins respectively.

The upgrade is not done automatically, so please follow the Upgrade Procedure section below.

Although you are strongly advised to upgrade your switchboard phone configuration, backwards compatibility
with the old system will be maintained.

Note that if you need to install a switchboard for a previous version of XiVO, the old xivo-aastra-switchboard and
xivo-snom-switchboard plugins can be found in the archive repository.

Upgrade Procedure This procedure should be executed after the upgrade to 14.07 or later: the options used in
this procedure are not available in versions before 14.07.

The following upgrade procedure suppose that you are using an Aastra phone as your switchboard phone. The
same upgrade procedure apply for Snom phones, with the only difference being the different plugin name.

1. Update the list of installable plugins.

2. Install the latest xivo-aastra plugin, or upgrade it to the latest version if it is already installed.

3. Install the needed language files and firmware files.

4. For each phone used for the switchboard, change the plugin and activate the switchboard option:

• Select the generic xivo-aastra plugin.

• Check the “switchboard” checkbox.

• Synchronize the phone.

5. Once this is completed, you can uninstall the xivo-aastra-switchboard plugin.

An unofficial script that automates this procedure is also available on github:

cd /tmp
wget --no-check-certificate https://raw.githubusercontent.com/xivo-pbx/xivo-tools/master/scripts/migrate_switchboard_1407.py
python migrate_switchboard_1407.py

1.4. Upgrading 41

http://alembic.readthedocs.org
https://projects.xivo.io/versions/198

XiVO Documentation, Release 16.08

14.06

• Consult the 14.06 Roadmap

• The XiVO client now uses Qt 5 instead of Qt 4. There is nothing to be aware of unless you are building
your own version of it.

14.05

• Consult the 14.05 Roadmap

• The CTI Protocol has been updated.

• The specification of the ‘answered-rate’ queue statistic has changed to exclude calls on a closed queue

• The switchboard can now choose which incoming call to answer

• The package versions do not necessarily contain the current XiVO version, it may contain older versions.
Only the package xivo is guaranteed to have the current XiVO version.

Please consult the following detailed updated notes for more information:

DAHDI 2.9.0 Upgrade Notes These notes only apply to Digium TE133 or TE134 cards that are in firmware
version 770017 or earlier.

Warning: The system will need to be power cycled after the upgrade. Your cards will not be usable until
then.

After the upgrade First, you need to install the latest firmware for your TE133 or TE134 cards:

xivo-fetchfw install digium-te133
xivo-fetchfw install digium-te134

Then stop all the services and reload the DAHDI modules. Reloading the DAHDI module might take up to 30
seconds:

xivo-service stop
service dahdi stop
service dahdi start

Following this manipulation, you should see something similar at the end of the /var/log/messages file:

dahdi: Telephony Interface Unloaded
dahdi: Version: 2.9.0
dahdi: Telephony Interface Registered on major 196
wcte13xp 0000:03:0c.0: Firmware version 6f0017 is running, but we require version 780017.
wcte13xp 0000:03:0c.0: firmware: agent loaded dahdi-fw-te134.bin into memory
wcte13xp 0000:03:0c.0: Found dahdi-fw-te134.bin (version: 780017) Preparing for flash
wcte13xp 0000:03:0c.0: Uploading dahdi-fw-te134.bin. This can take up to 30 seconds.
wcte13xp 0000:03:0c.0: Delaying reset. Firmware load requires a power cycle
wcte13xp 0000:03:0c.0: Running firmware version: 6f0017
wcte13xp 0000:03:0c.0: Loaded firmware version: 780017 (Will load after next power cycle)
wcte13xp 0000:03:0c.0: FALC version: 5
wcte13xp 0000:03:0c.0: Setting up global serial parameters for T1
wcte13xp 0000:03:0c.0: VPM450: firmware dahdi-fw-oct6114-032.bin not available from userspace
wcte13xp 0000:03:0c.0: Found a Wildcard TE132/TE134 (SN: 1TE134F - DF05132600690 - B1 - 20130702)

For the firmware update to complete, you must halt the machine (a reboot won’t be enough) before restarting it.

42 Chapter 1. Table of Contents

https://projects.xivo.io/versions/197
https://projects.xivo.io/versions/196

XiVO Documentation, Release 16.08

SCCP Upgrade Notes Important modification have been made to the internal structure of the SCCP channel
driver, xivo-libsccp.

The modifications mostly affect administrators; users are not affected.

Major changes are:

• Improved support for live modifications; no more manual intervention in the asterisk CLI is needed.

• Improved handling of concurrency; crash and deadlock due to concurrency problems should not occur
anymore.

CLI The following commands have been removed because they were not needed:

• sccp resync

• sccp set directmedia

• sccp show lines

• sccp update config

The behavior of the following commands have been changed:

• module reload chan_sccp reloads the module configuration, without interrupting the telephony ser-
vice. A device will only be resetted/restarted if needed, and only once the device is idle. Some changes
don’t even require the device to be resetted.

• sccp show config output format has been changed a little.

• sccp show devices only show the connected devices instead of all the devices. This might change in
the future. To get a list of all the devices, use sccp show config.

Configuration File The format of the sccp.conf configuration file has been changed. This will only impact
you if you are using xivo-libsccp without using XiVO.

The format has been changed because the module is now using the ACO module from asterisk, which expect
configuration file to have a specific format.

See sccp.conf.sample for a configuration file example.

Other Each SCCP session/connection now use 3 file descriptors instead of 1 previously. On XiVO, the file
descriptor limit for the asterisk process is 8192, which means that the increase in used file descriptors should not
be a problem, even on a large installation.

14.04

• Consult the 14.04 Roadmap

• Live reload of the configuration can be enabled and disabled using the REST API

• The generation of call logs for unanswered calls from the XiVO client have been improved.

14.03

• Consult the 14.03 Roadmap

• A migration script adds an index on the linkedid field in the cel table. Tests have shown that this operation
can last up to 11.5 minutes on a XiVO Corporate with 18 millions CELs. xivo-upgrade will thus be slightly
longer.

• Two new daemons are now operationnal, xivo-amid and xivo-call-logd:

– xivo-amid constantly reads the AMI and sends AMI events to the RabbitMQ bus

– xivo-call-logd generates call-logs in real time based on AMI LINKEDID_END events read on the bus

1.4. Upgrading 43

https://raw.github.com/xivo-pbx/xivo-libsccp/master/xivo-libsccp/configs/sccp.conf.sample
https://projects.xivo.io/versions/195
https://projects.xivo.io/versions/194

XiVO Documentation, Release 16.08

• An increase in load average is expected with the addition of these two new daemons.

• The cron job calling xivo-call-logs now runs once a day at 4:25 instead of every 5 minutes.

14.02

• Consult the 14.02 Roadmap

• PHP Web services has been removed from documentation

• REST API 1.0 Web services has been removed from documentation

• REST API 1.1 User-Line-Extension service is replaced by User-Line and Line-Extension services

14.01

• Consult the 14.01 Roadmap

• The following paths have been renamed:

– /etc/pf-xivo to /etc/xivo

– /var/lib/pf-xivo to /var/lib/xivo

– /usr/share/pf-xivo to /usr/share/xivo

You must update any dialplan or configuration file using these paths

2013

13.25

• Consult the 13.25 Roadmap

• Debian has been upgraded from version 6 (squeeze) to 7 (wheezy).

Please consult the following detailed upgrade notes for more information:

Debian 7 (wheezy) Upgrade Notes

Before the upgrade

• The upgrade will take longer than usual, because the whole Debian system will be upgraded

• The system must be restarted after the upgrade, because the Linux kernel will also be upgraded

LDAPS In case XiVO is using a LDAP server through SSL/TLS (LDAPS), the documentation instructed you
to append the certificate to /etc/ssl/certs/ca-certificates.crt. However, this is the wrong way to
add a new certificate, because it will be erased by the upgrade.

To keep your certificate installed through the upgrade, you must follow the instructions given in the LDAP docu-
mentation.

After the upgrade

GRUB (Cloned Virtual Machines only) GRUB installations on cloned virtual machines may lead to un-
bootable systems, if not fixed properly before restarting the system. If xivo-upgrade detects your system is in
a broken state, it will display a few commands to repair the GRUB installation.

44 Chapter 1. Table of Contents

https://projects.xivo.io/versions/193
https://projects.xivo.io/versions/192
https://projects.xivo.io/versions/191

XiVO Documentation, Release 16.08

13.24

• Consult the 13.24 Roadmap

• Default Quality of Service (QoS) settings have been changed for SCCP. The IP packets containing audio
media are now marked with the EF DSCP.

13.23

• Consult the 13.23 Roadmap

• The New call softkey has been removed from SCCP phones in connected state. To start a new call, the user
will have to press Hold then New call. This is the same behavior as a Call Manager.

• Some softkeys have been moved on SCCP phones. We tried to keep the keys in the same position at any
given time. As an example, the transfer key will not become End call while transfering a call. Note that this
is a work in progress and some models still need some tweaking.

13.22

• Consult the 13.22 Roadmap

• PostgreSQL will be upgraded from 9.0 to 9.1. The upgrade of XiVO will take longer than usual, depending
on the size of the database. Usually, the database grows with the number of calls processed by XiVO. The
upgrade will be stopped if not enough space is available on the XiVO server.

13.21

• Consult the 13.21 Roadmap

• It is no more possible to delete a device associated to a line using REST API.

13.20

• Consult the 13.20 Roadmap

• xivo-libsccp now supports direct media on wifi phone 7920 and 7921

• xivo-confd now implements a voicemail list

13.19

• Since XiVO 13.18 was not released, the 13.19 release contains all developments of both 13.18 and 13.19,
therefore please consult both Roadmaps :

• Consult the 13.19 Roadmap

• Consult the 13.18 Roadmap

• Call logs are now generated automatically, incrementally and regularly. Call logs generated before 13.19
will be erased one last time.

• The database was highly modified for everything related to devices : table devicefeatures does not exist
anymore and now relies on information from xivo-provd.

13.17

• Consult the 13.17 Roadmap

• There is a major change to call logs. They are no longer available as a web report but only as a csv export.
See the call logs documentation. Furthermore, call logs are now fetched from xivo-confd REST API.

• Paging group numbers are now exclusively numeric. All non-numeric paging group numbers are converted
to their numeric-only equivalent while upgrading to XiVO 13.17 (*58 becomes 58, for example).

1.4. Upgrading 45

https://projects.xivo.io/versions/190
https://projects.xivo.io/versions/189
https://projects.xivo.io/versions/188
https://projects.xivo.io/versions/187
https://projects.xivo.io/versions/186
https://projects.xivo.io/versions/185
https://projects.xivo.io/versions/184
https://projects.xivo.io/versions/183

XiVO Documentation, Release 16.08

13.16

• Consult the 13.16 Roadmap

• A migration script modifies the user and line related-tables and the way users, lines and extensions are
associated. As a consequence of this script, it is not possible any more to associate a user and a line without
extensions. Existing associations between users and one or more lines having no extensions will be removed.
Users and lines will still exist unassociated.

• The call logs page is able to display partial results of big queries, instead of displaying a blank page.

• Two new CEL messages are now enabled : LINKEDID_END and BRIDGE_UPDATE. Those events will
only exist in CEL for calls passed after upgrading to XiVO 13.16.

• The new REST API now makes possible to associate multiple user to a given line and/or extension. There
are currently some limitations on how those users and lines can be manipulated using the web interface.

13.15

• There was no production release of XiVO 13.15. All 13.15 developments are included in the official 13.16
release.

13.14

• Consult the 13.14 Roadmap

• The latest Polycom plugin enables the phone lock feature with a default user password of ‘123’. All Polycom
phones used with XiVO also have a default admin password. In order for the phone lock feature to be secure,
one should change every phone’s admin AND user passwords.

• WebServices for SIP trunks/lines: field nat: value yes changed to force_rport,comedia

• The database has beed updated in order to remove deprecated tables (generalfeatures, extenumbers, exten-
hash, cost_center).

13.13

• Consult the 13.13 Roadmap

13.12

• Consult the 13.12 Roadmap

• CTI protocol: Modified values of agent availability. Read CTI Protocol changelog

• Clean-up was made related to the minimization of the XiVO Client. Some visual differences have been
observed on Mac OS X that do not affect the XiVO Client in a functional way.

13.11

• Consult the 13.11 Roadmap

• Asterisk has been upgraded from version 11.3.0 to 11.4.0

API changes:

• Dialplan variable XIVO_INTERFACE_0 is now XIVO_INTERFACE

• Dialplan variable XIVO_INTERFACE_NB and XIVO_INTERFACE_COUNT have been removed

• The following fields have been removed from the lines and users web services

– line_num

– roles_group

46 Chapter 1. Table of Contents

https://projects.xivo.io/versions/182
https://projects.xivo.io/versions/180
https://projects.xivo.io/versions/179
https://projects.xivo.io/versions/178
https://projects.xivo.io/versions/177

XiVO Documentation, Release 16.08

– rules_order

– rules_time

– rules_type

13.10

• Consult the 13.10 Roadmap

API changes:

• CTI protocol: for messages of class getlist and function updateconfig, the config ob-
ject/dictionary does not have a rules_order key anymore.

13.09

• Consult the 13.09 Roadmap

• The Restart CTI server link has been moved from Services → CTI Server → Control to Services → IPBX
→ Control.

• The Agent Status Dashboard has been optimized.

• The Directory xlet can now be used to place call.

13.08

• Consult the 13.08 Roadmap

• asterisk has been upgraded from version 1.8.21.0 to 11.3.0, which is a major asterisk upgrade.

• The switchboard’s queue now requires the xivo_subr_switchboard preprocess subroutine.

• A fix to bug #4296 introduced functional changes due to the order in which sub-contexts are included.
Please refer to ticket for details.

Please consult the following detailed upgrade notes for more information:

Asterisk 1.8 to 11 Upgrade Notes Table of modules that were available in the asterisk 1.8 package but that are
not available anymore in the asterisk 11 package:

Name Description Loaded in
AST1.8

Asterisk
Status

Replaced By

app_dahdibarge Barge in on DAHDI channel
application

Yes Deprecated app_chanspy

app_readfile Stores output of file into a variable Yes Deprecated func_env
(FILE())

app_saycountpl Say polish counting words Yes Deprecated say.conf
app_setcallerid Set CallerID Presentation

Application
Yes Deprecated func_callerid

cdr_sqlite SQLite CDR Backend No Removed cdr_sqlite3_custom
chan_gtalk Gtalk Channel Driver No Deprecated chan_motif
chan_jingle Jingle Channel Driver No Deprecated chan_motif
chan_vpb Voicetronix API driver No Supported
format_sln16 Raw Signed Linear 16KHz Audio

support
Yes Removed format_sln

res_ais SAForum AIS No Removed res_corosync
res_jabber AJI - Asterisk Jabber Interface No Deprecated res_xmpp

List of modules that were loaded in asterisk 1.8 but that are not loaded anymore in asterisk 11 (see modules.conf):

• res_calendar.so

1.4. Upgrading 47

https://projects.xivo.io/versions/176
https://projects.xivo.io/versions/175
https://projects.xivo.io/versions/174
https://projects.xivo.io/issues/4296
https://projects.xivo.io/issues/4296

XiVO Documentation, Release 16.08

• res_calendar_caldav.so

• res_calendar_ews.so

• res_calendar_exchange.so

• res_calendar_icalendar.so

• res_config_sqlite.so

• res_stun_monitor.so

List of debian packages that are not available anymore for asterisk 11:

• asterisk-config

• asterisk-mysql

• asterisk-web-vmail

Note: These packages were not installed by default for asterisk 1.8.

If you are using some custom dialplan or AGIs, it is your responsibility to make sure it still works with asterisk
11. See the External Links for more information.

External Links

• http://svnview.digium.com/svn/asterisk/branches/11/UPGRADE-10.txt

• http://svnview.digium.com/svn/asterisk/branches/11/UPGRADE.txt

• https://wiki.asterisk.org/wiki/display/AST/New+in+10

• https://wiki.asterisk.org/wiki/display/AST/New+in+11

The switchboard’s queue preprocess subroutine The switchboard’s queue now uses a preprocess subroutine
named xivo_subr_switchboard. This preprocess subroutine will be associated with all queues named __switch-
board that have no preprocess subroutine defined before the upgrade.

If your switchboard queue is named anything other than __switchboard you should add the preprocess subroutine
manually.

If your switchboard queue already has a preprocess subroutine, you should add a Gosub(xivo_subr_switchboard)
to you preprocess subroutine.

Warning: This change is only applied to the switchboard distribution queue, not the queue for calls on hold.

13.07

• Consult the 13.07 Roadmap

• Agent Status Dashboard has more features and less limitations. See related agent status dashboard docu-
mentation

• XiVO call centers have no more notion of ‘disabled agents’. All previously disabled agents in web interface
will become active agents after upgrading.

• asterisk has been upgraded from version 1.8.20.1 to 1.8.21.0. Please note that in XiVO 13.08, asterisk will
be upgraded to version 11.

• DAHDI has been upgraded from version 2.6.1 to 2.6.2.

• libpri has been upgraded from version 1.4.13 to 1.4.14.

• PostgreSQL upgraded from version 9.0.4 to 9.0.13

48 Chapter 1. Table of Contents

http://svnview.digium.com/svn/asterisk/branches/11/UPGRADE-10.txt
http://svnview.digium.com/svn/asterisk/branches/11/UPGRADE.txt
https://wiki.asterisk.org/wiki/display/AST/New+in+10
https://wiki.asterisk.org/wiki/display/AST/New+in+11
https://projects.xivo.io/versions/173

XiVO Documentation, Release 16.08

13.06

• Consult the 13.06 Roadmap

• The new Agent Status Dashboard has a few known limitations. See related dashboard xlet known issues
section

• Status Since counter in xlet list of agents has changed behavior to better reflect states of agents in queues as
seen by asterisk. See Ticket #4254 for more details.

13.05

• Consult the 13.05 Roadmap

• The bug #4228 concerning BS filter only applies to 13.04 servers installed from scratch. Please upgrade to
13.05.

• The order of softkeys on SCCP phones has changed, e.g. the Bis button is now at the left.

13.04

• Consult the 13.04 Roadmap

• Upgrade procedure for HA Cluster has changed. Refer to Specific Procedure : Upgrading a Cluster.

• Configuration of switchboards has changed. Since the directory xlet can now display any column from the
lookup source, a display filter has to be configured and assigned to the __switchboard_directory context.
Refer to Directory xlet documenttion.

• There is no more context field directly associated with a call filter. Boss and secretary users associated with
a call filter must necessarily be in the same context.

2012

12.24

• Consult the 12.24 Roadmap

• XiVO 12.24 has some limitations mainly affecting the contact center features due to the rewriting of the
code handling agents.

Please consult the following detailed upgrade notes for more information:

Contact Center XiVO 12.24 In order to fix problems related to Asterisk freezing through the chan_agent mod-
ule, XiVO 12.24 implements a new way of managing agents.

Warning The contact center XiVO 12.24 does not implement all the features available in 12.22. Therefore, you
must not upgrade your XiVO if you depend on these features. These features will be reimplemented in the future
starting with version 13.01.

Missing Features

• Skill-based routing

• Penalities

• Call listening

1.4. Upgrading 49

https://projects.xivo.io/versions/172
https://projects.xivo.io/issues/4254
https://projects.xivo.io/versions/171
https://projects.xivo.io/issues/4228
https://projects.xivo.io/versions/170
https://projects.xivo.io/versions/165

XiVO Documentation, Release 16.08

Live reload via the web interface Agents must be logged out for the following operations:

• Adding or removing agents from the queues

• When changing the name of a queue (only the name, not the displayed name)

You can logoff all the agents with the following command:

xivo-agentctl -c "logoff all"

Preprocess subroutines Subroutines on users are currently no longer executed when an agent receives a call
from the queue

High availability (HA) HA for the contact center is not supported for the moment. When switching from a
master to a slave, you must relog all your agents.

SCCP Devices The “Available” / “In use” statuses for agents that are logged in do not work for the moment.

Changes in behavior

“In use” indicator in the XiVO client In XiVO 12.22, an agent is seen as “In use” when:

• The agent’s phone is ringing or has answered a call coming only from a queue

In XiVO 12.24:

• The agent’s phone is “In use” no matter where the call comes from

“Available” indicator in the XiVO client In XiVO 12.22, an agent is seen as “Available” when:

• The agent is not in pause/wrapup and his phone isn’t ringing/in conversation for a call coming from a queue

In XiVO 12.24:

• The agent is not in pause/wrapup and his phone is in the “idle” state

“Agent linked” / “Agent unlinked” Events The “Agent linked” event no longer exists in XiVO 12.24. xivo-
upgrade will automatically migrate “Agent linked” / “Agent unlinked” sheets to the “linked” / “unlinked” event.

“Static” Agent VS “Dynamic” agent in the XiVO client There is no longer a difference between a “static” or
“dynamic” membership. All agent memberships are now considered “static”. Membership changes between the
web interface and the XiVO client are now synchronized.

Updates Please note that when upgrading, the following actions will take place automatically:

• All agents will be logged off before migrating

• All agents with a “dynamic” membership will be removed from their queues

Another change is in effect beginning with XiVO 12.24: the field profileclient in the CSV user import sees
its values change.

Old value New value
client Client
agent Agent
switchboard Switchboard
agentsup Supervisor
oper removed
clock removed

50 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5 XiVO Client

1.5.1 What is the XiVO Client

The XiVO Client is an application that you install on your computer and is connected to the XiVO server. This
application offers the following features:

• search contacts and show their presence, phone status

• make calls through your phone (the XiVO Client is NOT a softphone, it is complementary to the phone)

• access your voicemail through your phone

• enable call forwards, call filtering

• show the history of your calls

• list conference rooms and members

• send faxes

It also offers some call center features:

• show screen popups or open URLs when you receive/answer a call

• list agents, queues, calls in queues

• login/logoff, pause/unpause other agents (for supervisors)

• listen/whisper to agents through you phone (for supervisors)

A lot of those features are modular and may be enabled for each user by choosing which Xlets they can see.

1.5.2 Getting the XiVO client

Binaries of the XiVO Client are available on our mirror. (latest version) (all versions)

Warning: The installed version of the XiVO Client must match the XiVO server’s version installation. With
our current architecture, there is no way to guarantee that the XiVO server will be retro-compatible with older
versions of the XiVO Client. Non-matching XiVO server and XiVO Clients versions might lead to unexpected
behaviour.

Choose the version you want and in the right directory, get :

• the .exe file for Windows

• the .deb file for Ubuntu or Debian (i386 or amd64, depending on your computer)

• the .dmg file for Mac OS

For Windows, double-click on the file and follow the instructions. You can also install it silently:

xivoclient-14.XX-x86.exe /S

For Ubuntu/Debian, double-click on the file or execute the following command:

$ gdebi xivoclient-*.deb

For Mac OS, double-click on the file and drag-and-drop the inner file on the Application entry of the Finder.

The XiVO Client should then be available in the applications menu of each platform.

If you want to build your own XiVO Client, see Building the XiVO Client.

1.5. XiVO Client 51

http://mirror.xivo.io/iso/xivo-current
http://mirror.xivo.io/iso/archives

XiVO Documentation, Release 16.08

1.5.3 Connection to the server

To connect to the server using the XiVO client you need a user name, a password and the server’s address.
Optionally, it is possible to login an agent while connecting to the server.

1.5.4 Xlets

Xlets are features of the XiVO Client. It is the contraction of XiVO applets. To select which xlets are displayed in
your client, see CTI profiles.

Conference Xlet

Overview

The conference xlet allow the user to join conferences and view conference room statuses.

Usage

The Conference room list tab show all available conference rooms configured on the XiVO. The user can click on a
conference number to join the conference. When a user joins a conference, his phone will ring and the conference
will be joined when the user answers the phone.

When clicking on a conference room a new tab is opened for the selected conference room. The new tab contains
information about the members of the conference. The name and number of the member will be displayed when
available. Users can also mute and unmute themselves using the microphone icon on the left.

Directory Xlet

Overview

Warning: This xlet should only be used with a Switchboard profile. It is not meant to be used alone.

The goal of the directory xlet is to allow the user to search through XiVO users, directory entries and arbitrary
numbers to be able to call and transfer calls to these destinations.

Usage

The list of entries in the xlet is searched using the top field. Entries are filtered by column content. The entry list
will initially appear as empty.

If the current search term is a valid number, it will be displayed in the result list with no name to allow transfer to
numbers that are not currently in the phonebook or configured on the XiVO.

Legend

• Users available

• Users ringing

• Users talking

52 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5. XiVO Client 53

XiVO Documentation, Release 16.08

54 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5. XiVO Client 55

XiVO Documentation, Release 16.08

• Users

• Mobile phone

• External contacts

• Current search (not a contact)

Phonebook

Phonebook searches are triggered after the user has entered 3 characters. Results from remote directories will
appear after 1 second.

If a directory entry as the same number as a mobile or a phone configured on the XiVO, it’s extra columns will be
added to the corresponding entry instead of creating a new line in the search result.

For example:

If User 1 has number 1000 and is also in a configured LDAP with a location in “Québec”, if the display filter
contains the Location column, the entry for User 1 will show “Québec” in the Location column after the search
results are received.

Configuration

Context The directory xlet needs a special context named __switchboard_directory. In Services → IPBX →
IPBX configuration → Contexts add a new context with the following parameters :

• Name : __switchboard_directory

• Type of context : Other

• Display name : Switchboard

Display filter A new display filter must be created for the directory xlet.

The following fields must be configured with the correct value for the Field type column in order for entries to be
displayed in the xlet:

1. status is the column that will be used to display the status icon, the title can be empty

2. name is displayed in the Name column of the xlet

3. number_office is displayed in the Number column with a phone icon in the xlet

4. number_mobile is displayed in the Number column with a mobile icon in the xlet

56 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

5. number_... any other field starting with number_ will be displayed in the Number column of the xlet with a
generic directory icon

6. Any other field will be displayed in their own column of the directory xlet

The values in the Field name column must contain values that were created in the Directory definition.

The title used for the Number column is the title of the first field whose type starts with number_.

Note: The field title of the first number column will be used for the header title in the xlet.

Warning: Make sure that the fields entered in the display format are also available in the directory definition,
otherwise the filter will not return any results

Context and filter association The new Display filter has to be assigned to the __switchboard_directory context

You can then choose which directories will be searched by the Xlet.

1.5. XiVO Client 57

XiVO Documentation, Release 16.08

Warning: You must not select internal directory, as it is already handled.

LDAP Configuration To search in ldap directories, you must have an LDAP server configured. See LDAP for
more details.

LDAP filter If you already have an LDAP filter configured for the Remote directory Xlet, you can use it.

If not, please refer to Add a LDAP Filter.

Include the new directory for lookup You must use the new LDAP filter in the Context and filter association
step.

Fax Xlet

Overview

The Fax xlet allows the user to send faxes from his XiVO client.

58 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Usage

The Choose a file to send field is used to select which file you want to send. Only PDF documents are supported.

The Choose destination number field is the fax destination, directory search can be used to find the fax number in
available directories.

History Xlet

Overview

The history xlet allow the user to view his last calls. The user can filter by sent, received and missed calls.

Usage

The user can click on the number to initiate a new call with a given correspondent.

1.5. XiVO Client 59

XiVO Documentation, Release 16.08

Warning:
• The column content is only refreshed when moving from one view to the other.
• The Sent calls tab displays only the phone number of the called party (the name column will be void).

Identity Xlet

Overview

The Identity Xlet allows you to make calls from your computer, via your phone. This means that you can enter the
number that you want to dial on your computer, then your phone rings and when you answer it, the called phone
will ring.

Usage

You can enter the number you want to dial in the text box and then click the button or press enter to dial it.

If you dial an invalid extension (a number is an extension), your phone will ring and you will be told that the
extension is not valid.

People Xlet

Overview

The People XLet lists the people of your company and personal contacts, giving you access to their phone, status
and other information configured by the administrator.

1. Display results of the search

2. Display favorite contacts

3. Search contacts

4. Call a contact

5. Transfer a call to a contact

6. Transfer a call to a contact’s voicemail

7. Chat with a contact

8. Send an email to a contact

9. Bookmark/unmark the contact as a favorite

1. View all personal contacts

2. Edit or remove a personal contact

3. Create a personal contact

60 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5. XiVO Client 61

XiVO Documentation, Release 16.08

4. Import personal contacts from a CSV file

5. Export personal contacts to a CSV file

6. Delete all personal contacts

1. XiVO Client status (see Presence Option)

2. Phone status (see Services → CTI Server → Status → Phone hints page)

3. Agent status (logged in or logged out)

Note: Most information (e.g. columns displayed, allowed actions, searched directories, etc.) is configurable
through the web interface.

Importing contacts via CSV file

Imported files should have the following structure:

firstname,lastname,number,email,company,fax,mobile
John,Doe,5555551111,my@email,xivo,5555552222,5555553333

• The field order is not important.

• The file must be encoded in UTF-8.

• Invalid lines of the CSV file will be skipped and an error will be displayed in the import report.

Exporting contacts via CSV file

The file has the same structure as the import file, with a supplementary field: id, which is the internal contact ID
from XiVO.

• The first line (the list of field names) is ordered in alphabetical order.

• The file will be encoded in UTF-8.

Copying the number or email address

It is possible to copy a contact’s number or email address to the system’s clipboard. To do so, right click on a
contact’s action menu and select the value you wish to copy.

Note: When using a mac without a right mouse button use ctrl-Left click to show the copy menu.

62 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Service Xlet

Overview

The service xlet allows the user to enable and disable telephony services such as call forwarding, call filter and do
not disturb.

Configuration

The available service list is configured from the web interface in Services → CTI Server → General settings →
Profiles.

The right side of the Services section contains services that are available to a given profile.

1.5.5 Configuration

The XiVO Client configuration options can be accessed under XiVO Client → Configure.

1.5. XiVO Client 63

XiVO Documentation, Release 16.08

Connection Configuration

This page allows the user to set his network information to connect to the xivo-ctid server.

• Server is the IP address of the server.

• Backup server is the IP address of the backup server.

• Port is the port on which xivo-ctid is listening for connections. (default: 5003)

• STARTTLS is used to specify that a secure connect should be used

Note: To use STARTTLS, the server needs to be configured to accept encrypted connection.

1.5.6 Handling callto: and tel: URLs

The XiVO Client can handle telephone number links that appear in web pages. The client will automatically dial
the number when you click on a link.

Note: You must already be logged in for automatic dialing to work, otherwise the client will simply start up and
wait for you to log in.

Warning: The option in the XiVO Client GUI Options → Allow multiple instances of XiVO Client must be
disabled, else you will launch one new XiVO Client with every click.

Mac OS

callto: links will work out-of-the-box in Safari and other web browsers after installing the client.

64 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5. XiVO Client 65

XiVO Documentation, Release 16.08

tel: links will open FaceTime after installing the client. To make the XiVO Client the default application to
open tel: URLs in Safari.

1. Open the FaceTime application

2. Connect using your apple account

3. Open the FaceTime preferences

4. Change the Default for calls entry to xivoclient.app

Note: The tel: URL works out-of-the-box in versions of mac osx before 10.10.

Windows

XiVO Client is associated with callto: and tel: upon installation. Installing other applications afterward
could end up overriding these associations. Starting with Windows Vista, it is possible to configure these associa-
tions via the Default Programs. Users can access Default Programs from Control Panel or directly from the Start
menu.

The following popups might appear when you open a callto: or tel: link for the first time in Internet
Explorer:

Simply click on allow to dial the number using the XiVO Client.

66 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.5. XiVO Client 67

XiVO Documentation, Release 16.08

Note: If you do not want these warnings to appear each time, do not forget to check/uncheck the checkbox at the
bottom of the popups.

Ubuntu

Currently, callto: or tel: links are only supported in Firefox. There is no configuration needed.

GNU/Linux Debian

Currently, callto: or tel: links are only supported in Firefox. If the XiVO Client is not listed in the proposi-
tion when you open the link, browse your files to find /usr/bin/xivoclient.

Manual association in Firefox

If, for some reason, Firefox does not recognize callto: or tel: URIs you can manually associate them to the
XiVO Client using the following steps:

1. Type about:config in the URL bar

2. Click the I’ll be careful, I promise ! button to close the warning

3. Right-click anywhere in the list and select New -> Boolean

4. Enter network.protocol-handler.external.callto as preference name

5. Select false as value

6. Repeat steps 3 to 6, but replace callto by tel at step 4

The next time that you click on a telephone link, Firefox will ask you to choose an application. You will then be
able to choose the XiVO client for handling telephone numbers.

68 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.6 System

1.6.1 DHCP Server

XiVO includes a DHCP server used for assisting in the provisioning of phones and other devices. (See Basic
Configuration for the basic setup). This section contains additional notes on how to configure more advanced
options that may be helpful when integrating the server with different VOIP subnets.

Activating DHCP on another interface

DHCP Server can be activated through the XiVO Web Interface Configuration → Network → DHCP :

Fig. 1.18: Configuration → Network → DHCP

By default, it will only answer to DHCP requests coming from the VoIP subnet (defined in the Configuration →
Network → Interfaces section). If you need to activate DHCP on an other interface, you have to fill in the Extra
network interfaces field with the interface name , for example : eth0

After saving your modifications, click on Apply system configuration so that the new settings can take effect.

Changing default DHCP gateway

By default, the XiVO DHCP server uses the XiVO’s IP address as the routing address. To change this you must
create a custom-template:

1. Create a custom template for the dhcpd_subnet.conf.head file:

mkdir -p /etc/xivo/custom-templates/dhcp/etc/dhcp/
cd /etc/xivo/custom-templates/dhcp/etc/dhcp/
cp /usr/share/xivo-config/templates/dhcp/etc/dhcp/dhcpd_subnet.conf.head .

2. Edit the custom template:

vim dhcpd_subnet.conf.head

3. In the file, replace the string #XIVO_NET4_IP# by the routing address of your VoIP network, for example:

option routers 192.168.2.254;

4. Re-generate the dhcp configuration:

xivo-update-config

DHCP server should have been restarted and should now use the new routing address.

Configuring DHCP server to serve unknown hosts

By default, the XiVO DHCP server serves only known hosts. That is:

• either hosts which MAC address prefix (the OUI) is known

• or hosts which Vendor Identifier is known

1.6. System 69

http://en.wikipedia.org/wiki/Organizationally_unique_identifier

XiVO Documentation, Release 16.08

Known OUIs and Vendor Class Identifiers are declared in /etc/dhcp/dhcpd_update/* files.

If you want your XiVO DHCP server to serve also unknown hosts (like PCs) follow these instructions:

1. Create a custom template for the dhcpd_subnet.conf.tail file:

mkdir -p /etc/xivo/custom-templates/dhcp/etc/dhcp/
cd /etc/xivo/custom-templates/dhcp/etc/dhcp/
cp /usr/share/xivo-config/templates/dhcp/etc/dhcp/dhcpd_subnet.conf.tail .

2. Edit the custom template:

vim dhcpd_subnet.conf.tail

3. And add the following line at the head of the file:

allow unknown-clients;

4. Re-generate the dhcp configuration:

xivo-update-config

DHCP server should have been restarted and should now serve all network equipments.

DHCP-Relay

If your telephony devices aren’t located on the same site and the same broadcast domain as the XiVO DHCP
server, you will have to add the option DHCP Relay to the site’s router. This parameter will allow the DHCP
requests from distant devices to be transmitted to the IP address you specify as DHCP Relay.

Warning: Please make sure that the IP address used as DHCP Relay is the same as one of XiVO’s interfaces,
and that this interface is configured to listen to DHCP requests (as decribed in previous part). Also verify that
routing is configured between the distant router and the choosen interface, otherwise DHCP requests will never
reach the XiVO server.

Configuring DHCP server for other subnets

This section describes how to configure XiVO to serve other subnets that the VOIP subnet. As you can’t use the
Web Interface to declare other subnets (for example to address DATA subnet, or a VOIP subnet that isn’t on the
same site that XiVO server), you’ll have to do the following configuration on the Command Line Interface.

Creating “extra subnet” configuration files

First thing to do is to create a directory and to copy into it the configuration files:

mkdir /etc/dhcp/dhcpd_sites/
cp /etc/dhcp/dhcpd_subnet.conf /etc/dhcp/dhcpd_sites/dhcpd_siteXXX.conf
cp /etc/dhcp/dhcpd_subnet.conf /etc/dhcp/dhcpd_sites/dhcpd_lanDATA.conf

Note: In this case we’ll create 2 files for 2 differents subnets. You can change the name of the files, and create as
many files as you want in the folder /etc/dhcp/dhcpd_sites/. Just adapt this procedure by changing the
name of the file in the different links.

After creating one or several files in /etc/dhcp/dhcpd_sites/, you have to edit the file
/etc/dhcp/dhcpd_extra.conf and add the according include statement like:

include "/etc/dhcp/dhcpd_sites/dhcpd_siteXXX.conf";
include "/etc/dhcp/dhcpd_sites/dhcpd_lanDATA.conf";

70 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Adjusting Options of the DHCP server

Once you have created the subnet in the DHCP server, you must edit each configuration file (the files in
/etc/dhcp/dhcpd_sites/) and modify the different parameters. In section subnet, write the IP subnet
and change the following options (underlined fields in the example):

subnet 172.30.8.0 netmask 255.255.255.0 {

• subnet-mask:

option subnet-mask 255.255.255.0;

• broadcast-address:

option broadcast-address 172.30.8.255;

• routers (specify the IP address of the router that will be the default gateway of the site):

option routers 172.30.8.1;

In section pool, modify the options:

pool {

• log (add the name of the site or of the subnet):

log(concat("[", binary-to-ascii(16, 8, ":", hardware), "] POOL VoIP Site XXX"));

• range (it will define the range of IP address the DHCP server can use to address the devices of that subnet):

range 172.30.8.10 172.30.8.200;

Warning: XiVO only answers to DHCP requests from supported devices. In case of you need to address
other equipment, use the option allow unknown-clients; in the /etc/dhcp/dhcpd_sites/ files

At this point, you can apply the changes of the DHCP server with the command:

service isc-dhcp-server restart

After that, XiVO will start to serve the DHCP requests of the devices located on other sites or other subnets than
the VOIP subnet. You will see in /var/log/daemon.log all the DHCP requests received and how they are
handled by XiVO.

1.6.2 Mail

This section describes how to configure the mail server shipped with XiVO (Postfix) and the way XiVO handles
mails.

In Configuration → Network → Mail, the following options can be configured:

• Domain Name messaging : the server’s displayed domain. Will appear in “Received” mail headers.

• Source address of the server : domain part of headers “Return-Path” and “From”.

• Relay SMTP and FallBack relay SMTP : relay mail servers.

• Rewriting shipping addresses : Canonical address Rewriting. See Postfix canonical documentation for more
info.

Warning: Postfix, the mail server shipped with XiVO, should be stopped on an installed XiVO with no valid
and reachable DNS servers configured. If Postfix is not stopped, messages will bounce in queues and could
end up affecting core pbx features.

If you need to disable Postfix here is how you should do it:

1.6. System 71

http://www.postfix.org/ADDRESS_REWRITING_README.html#canonical

XiVO Documentation, Release 16.08

systemctl stop postfix
systemctl disable postfix

If you ever need to enable Postfix again:

systemctl enable postfix
systemctl start postfix

Alternatively, you can empty Postfix’s queues by issuging the following commands on the XiVO server:

postsuper -d ALL

1.6.3 Network

This section describes how to configure additional network devices that may be used to better accomodate more
complex network infrastructures. Network interfaces are managed in the XiVO web interface via the page Con-
figuration → Network → Interfaces.

XiVO offers 2 types of interfaces: VoIP and Data. The VoIP interface is used by the DHCP server, provisioning
server, and phone devices connected to your XiVO. These services will use the information provided on the VoIP
interface for their configuration. For example, the DHCP server will only listen on the VoIP interface by default.

To change these settings, you must either create a new interface or edit an existing one and change its type. When
adding a new VoIP interface, the type of the old one will automatically be changed to Data.

Configuring a physical interface

In this example, we’ll add and configure the eth1 network interface on our XiVO.

First, we see there’s already an unconfigured network interface named eth1 on our system:

Fig. 1.19: Configuration → Network → Interfaces

To add and configure it, we click on the small plus button next to it, and we get to this page:

In our case, since we want to configure this interface with static information (i.e. not via DHCP), we fill the
following fields:

Note that since our eth0 network interface already has a default gateway, we do not enter information in the
Default gateway field for our eth1 interface.

Once the changes have been saved, the action Apply network configuration will appear in bold. This action must
be clicked in order for the changes to take effect.

Adding a VLAN interface

In this example, the XiVO already has 2 network interfaces configured:

Listing the network interfaces

To add and configure a new VLAN interface, we click on the small plus button in the top right corner,

and we get to this page:

In our case, since we want to configure this interface with static information:

72 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.20: Configuration → Network → Interfaces → eth1 → Add

Fig. 1.21: Configuration → Network → Interfaces → eth1 → Add

1.6. System 73

XiVO Documentation, Release 16.08

Fig. 1.22: Apply after modify interface

Fig. 1.23: Configuration → Network → Interfaces

Fig. 1.24: Configuration → Network → Interfaces → Add button

74 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.25: Configuration → Network → Interfaces → Add

1.6. System 75

XiVO Documentation, Release 16.08

Fig. 1.26: Configuration → Network → Interfaces → Add

76 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Click on Save list the network interfaces:

Fig. 1.27: Configuration → Network → Interfaces

• The new virtual interface has been successfully created.

Note: Do not forget after you finish the configuration of the network to apply it with the button: Apply network
configuration

After applying the network configuration:

Fig. 1.28: Network configuration successfully apply

Add static network routes

Static routes cannot be added via the web interface. However, you may add static routes to your XiVO by following
following the steps described below. This procedure will ensure that your static routes are applied at startup (i.e.
each time the network interface goes up).

1. Create the file /etc/network/if-up.d/xivo-routes:

touch /etc/network/if-up.d/xivo-routes
chmod 755 /etc/network/if-up.d/xivo-routes

2. Insert the following content:

#!/bin/sh

if ["${IFACE}" = "<network interface>"]; then
ip route add <destination> via <gateway>
ip route add <destination> via <gateway>

fi

3. Fields <network interface>, <destination> and <gateway> should be replaced by your specific configuration.
For example, if you want to add a route for 192.168.50.128/25 via 192.168.17.254 which should be added
when eth0 goes up:

1.6. System 77

XiVO Documentation, Release 16.08

#!/bin/sh

if ["${IFACE}" = "eth0.2"]; then
ip route add 192.168.50.128/25 via 192.168.17.254

fi

Note: The above check is to ensure that the route will be applied only if the correct interface goes up. This check
should contain the actual name of the interface (i.e. eth0 or eth0.2 or eth1 or ...). Otherwise the route won’t be set
up in every cases.

Change interface MTU

Warning: Manually changing the MTU is risky. Please only proceed if you are aware of what you are doing.

These steps describe how to change the MTU:

#. Create the file :file:`/etc/network/if-up.d/xivo-mtu`::

touch /etc/network/if-up.d/xivo-mtu chmod 755 /etc/network/if-up.d/xivo-mtu

1. Insert the following content:

#!/bin/sh

Set MTU per iface
if ["${IFACE}" = "<data interface>"]; then

ip link set ${IFACE} mtu <data mtu>
elif ["${IFACE}" = "<voip interface>"]; then

ip link set ${IFACE} mtu <voip mtu>
fi

2. Change the <data interface> to the name of your interface (e.g. eth0), and the <data mtu> to the new MTU
(e.g. 1492),

3. Change the <voip interface> to the name of your interface (e.g. eth1), and the <voip mtu> to the new MTU
(e.g. 1488)

Note: In the above example you can set a different MTU per interface. If you don’t need a per-interface MTU
you can simply write:

#!/bin/sh

ip link set ${IFACE} mtu <my mtu>

1.6.4 Backup

Periodic backup

A backup of the database and the data are launched every day with a logrotate task. It is run at 06:25 a.m. and
backups are kept for 7 days.

Logrotate task:

/etc/logrotate.d/xivo-backup

Logrotate cron:

78 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

/etc/cron.daily/logrotate

Retrieve the backup

You can retrieve the backup from the web-interface in Services → IPBX → IPBX Configuration → Backup Files
page.

Otherwise, with shell access, you can retrieve them in /var/backups/xivo. In this directory you will find
db.tgz and data.tgz files for the database and data backups.

Backup scripts:

/usr/sbin/xivo-backup

Backup location:

/var/backups/xivo

What is actually backed-up?

Data

Here is the list of folders and files that are backed-up:

• /etc/asterisk/

• /etc/consul/

• /etc/crontab

• /etc/dahdi/

• /etc/dhcp/

• /etc/hostname

• /etc/hosts

• /etc/ldap/

• /etc/network/if-up.d/xivo-routes

• /etc/network/interfaces

• /etc/ntp.conf

• /etc/profile.d/xivo_uuid.sh

• /etc/resolv.conf

• /etc/ssl/

• /etc/systemd/

• /etc/wanpipe/

• /etc/xivo-agentd/

• /etc/xivo-agid/

• /etc/xivo-amid/

• /etc/xivo-auth/

• /etc/xivo-call-logd/

• /etc/xivo-confd/

• /etc/xivo-confgend-client/

• /etc/xivo-ctid/

1.6. System 79

XiVO Documentation, Release 16.08

• /etc/xivo-ctid-ng/

• /etc/xivo-dird/

• /etc/xivo-dird-phoned/

• /etc/xivo-dxtora/

• /etc/xivo-purge-db/

• /etc/xivo-websocketd/

• /etc/xivo/

• /usr/local/bin/

• /usr/local/sbin/

• /usr/share/xivo/XIVO-VERSION

• /var/lib/asterisk/

• /var/lib/consul/

• /var/lib/xivo-provd/

• /var/lib/xivo/

• /var/log/asterisk/

• /var/spool/asterisk/

• /var/spool/cron/crontabs/

The following files/folders are excluded from this backup:

• folders:

– /var/lib/xivo-provd/plugins/*/var/cache/*

– /var/spool/asterisk/monitor/

– /var/spool/asterisk/meetme/

• files

– /var/lib/xivo-provd/plugins/xivo-polycom*/var/tftpboot/*.ld

• log files, coredump files

• audio recordings

• and, files greater than 10 MiB or folders containing more than 100 files if they belong to one of these folders:

– /var/lib/xivo/sounds/

– /var/lib/asterisk/sounds/custom/

– /var/lib/asterisk/moh/

– /var/spool/asterisk/voicemail/

– /var/spool/asterisk/monitor/

Database

The database asterisk from PostgreSQL is backed up. This include almost everything that is configured via
the web interface.

80 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Creating backup files manually

Warning: A backup file may take a lot of space on the disk. You should check the free space on the partition
before creating one.

Database

You can manually create a database backup file named db-manual.tgz in /var/tmp by issuing the following
commands:

xivo-backup db /var/tmp/db-manual

Files

You can manually create a data backup file named data-manual.tgz in /var/tmp by issuing the following
commands:

xivo-backup data /var/tmp/data-manual

1.6.5 Restore

Introduction

A backup of both the configuration files and the database used by a XiVO installation is done automatically every
day. These backups are created in the /var/backups/xivo directory and are kept for 7 days.

Limitations

• You must restore a backup on the same version of XiVO that was backed up (though the architecture –
i386 or amd64 – may differ)

• You must restore a backup on a machine with the same hostname and IP address

• Be aware that this procedure applies only to XiVO >= 14.08 (see 14.08).

Before Restoring the System

Warning: Before restoring a XiVO on a fresh install you have to setup XiVO using the wizard (see Running
the Wizard section).

Stop monit and all the xivo services:

xivo-service stop

Restoring System Files

System files are stored in the data.tgz file located in the /var/backups/xivo directory.

This file contains for example, voicemail files, musics, voice guides, phone sets firmwares, provisioning server
configuration database.

To restore the file

1.6. System 81

XiVO Documentation, Release 16.08

tar xvfp /var/backups/xivo/data.tgz -C /

Restoring the Database

Warning:
• This will destroy all the current data in your database.
• You have to check the free space on your system partition before extracting the backups.

Database backups are created as db.tgz files in the /var/backups/xivo directory. These tarballs contains
a dump of the database used in XiVO.

In this example, we’ll restore the database from a backup file named db.tgz placed in the home directory of
root.

First, extract the content of the db.tgz file into the /var/tmp directory and go inside the newly created direc-
tory:

tar xvf db.tgz -C /var/tmp
cd /var/tmp/pg-backup

Drop the asterisk database and restore it with the one from the backup:

sudo -u postgres dropdb asterisk
sudo -u postgres pg_restore -C -d postgres asterisk-*.dump

To finalize the restore, see After Restoring The System.

Troubleshooting

When restoring the database, if you encounter problems related to the system locale, see PostgreSQL localization
errors.

Alternative: Restoring and Keeping System Configuration

System configuration like network interfaces is stored in the database. It is possible to keep this configuration and
only restore xivo data.

Rename the asterisk database to asterisk_previous:

sudo -u postgres psql -c 'ALTER DATABASE asterisk RENAME TO asterisk_previous'

Restore the asterisk database from the backup:

sudo -u postgres pg_restore -C -d postgres asterisk-*.dump

Restore the system configuration tables from the asterisk_previous database:

sudo -u postgres pg_dump -c -t dhcp -t netiface -t resolvconf asterisk_previous | sudo -u postgres psql asterisk

Drop the asterisk_previous database:

sudo -u postgres dropdb asterisk_previous

Warning: Restoring the data.tgz file also restores system files such as host hostname, network interfaces, etc.
You will need to reapply the network configuration if you restore the data.tgz file.

82 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

After Restoring The System

Resynchronize the xivo-auth keys:

xivo-update-keys

Update systemd runtime configuration:

source /etc/profile.d/xivo_uuid.sh
systemctl set-environment XIVO_UUID=$XIVO_UUID
systemctl daemon-reload

Restart the services you stopped in the first step:

xivo-service start

You may also reboot the system.

1.6.6 HTTPS certificate

X.509 certificates are used to authorize and secure communications with the server. They are mainly used for
HTTPS, but can also be used for SIPS, CTIS, WSS, etc.

There are two categories of certificates in XiVO:

• the default certificate, used for HTTPS in the web interface, REST APIs and WebSockets

• the certificates created and managed via the web interface

This article is about the former. For the latter, see Telephony certificates.

Default certificate

XiVO uses HTTPS where possible. The certificates are generated at install time (or during the upgrade to 15.12+).
The main certificate is placed in /usr/share/xivo-certs/server.crt.

However, this certificate is self-signed, and HTTP clients (browser or REST API client) will complain about this
default certificate because it is not signed by a trusted Certification Authority (CA).

The default certificate is untrusted

To make the HTTP client accept this certificate, you have two choices:

• configure your HTTP client to trust the self-signed XiVO certificate by adding a new trusted CA. The CA
certificate (or bundle) is the file /usr/share/xivo-certs/server.crt.

• replace the self-signed certificate with your own trusted certificate.

Use your own certificate

For this, follow these steps:

1. Replace the following files with your own private key/certificate pair:

• Private key: /usr/share/xivo-certs/server.key

• Certificate: /usr/share/xivo-certs/server.crt

2. Change the hostname of XiVO for each XiVO component: the different processes of XiVO heavily use
HTTPS for internal communication, and for these connection to establish successfully, all hostnames used
must match the Common Name (CN) of your certificate. Basically, you must replace all occurrences of
localhost (the default hostname) with your CN in the configuration of the XiVO services. For example:

1.6. System 83

XiVO Documentation, Release 16.08

mkdir /etc/xivo/custom
cat > /etc/xivo/custom/custom-certificate.yml << EOF
consul:
host: xivo.example.com

auth:
host: xivo.example.com

confd:
host: xivo.example.com

dird:
host: xivo.example.com

ajam:
host: xivo.example.com

agentd:
host: xivo.example.com

EOF
for config_dir in /etc/xivo-*/conf.d/ ; do

ln -s "/etc/xivo/custom/custom-certificate.yml" "$config_dir/010-custom-certificate.yml"
done

Also, you must replace localhost in the definition of your directories in the web interface under Config-
uration → Directories.

3. If your certificate is not self-signed, and you obtained it from a third-party CA that is trusted by your
system, you must enable the system-based certificate verification. By default, certificate verification is set
to consider /usr/share/xivo-certs/server.crt as the only CA certificate.

The options are the following:

• Consul: verify: True

• Other XiVO services: verify_certificate: True

The procedure is the same as 2. with more configuration for each service. For example:

cat > /etc/xivo/custom/custom-certificate.yml << EOF
consul:
host: xivo.example.com
verify: True

auth:
host: xivo.example.com
verify_certificate: True

dird:
host: xivo.example.com
verify_certificate: True

...

Setting verify_certificate to False will disable the certificate verification, but the connection will
still be encrypted. This is pretty safe as long as XiVO services stay on the same machine, however, this is
dangerous when XiVO services are separated by an untrusted network, such as the Internet.

4. Ensure your CN resolves to a valid IP address with either:

• a DNS entry

• an entry in /etc/hosts resolving your CN to 127.0.0.1. Note that /etc/hosts will be rewritten
occasionally by xivo-sysconfd. To make the change persistent, you can:

(a) modify /usr/share/xivo-sysconfd/templates/resolvconf/hosts instead
(which will be rewritten when xivo-sysconfd is upgraded...)

(b) then add a script in /usr/share/xivo-upgrade/pre-start.d to re-apply the modifi-
cation to /usr/share/xivo-sysconfd/templates/resolvconf/hosts after each
xivo-upgrade.

5. Restart all XiVO services:

84 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

xivo-service restart all

1.6.7 Configuration Files

This section describes some of the XiVO configuration files.

Configuration priority

Usually, the configuration is read from two locations: a configuration file config.yml and a configuration
directory conf.d.

Files in the conf.d extra configuration directory:

• are used in alphabetical order and the first one has priority

• are ignored when their name starts with a dot

• are ignored when their name does not end with .yml

For example:

.01-critical.yml:

log_level: critical

02-error.yml.dpkg-old:

log_level: error

10-debug.yml:

log_level: debug

20-nodebug.yml:

log_level: info

The value that will be used for log_level will be debug since:

• 10-debug.yml comes before 20-nodebug.yml in the alphabetical order.

• .01-critical.yml starts with a dot so is ignored

• 02-error.yml.dpkg-old does not end with .yml so is ignored

File configuration structure

Configuration files for every service running on a XiVO server will respect these rules:

• Default configuration directory in /etc/xivo-{service}/conf.d (e.g.
/etc/xivo-agentd/conf.d/)

• Default configuration file in /etc/xivo-{service}/config.yml (e.g.
/etc/xivo-agentd/config.yml)

The files /etc/xivo-{service}/config.yml should not be modified because they will be overridden
during upgrades. However, they may be used as examples for creating additional configuration files as long as
they respect the Configuration priority. Any exceptions to these rules are documented below.

xivo-agentd

• Default configuration directory: /etc/xivo-agentd/conf.d

• Default configuration file: /etc/xivo-agentd/config.yml

1.6. System 85

XiVO Documentation, Release 16.08

xivo-amid

• Default configuration directory: /etc/xivo-amid/conf.d

• Default configuration file: /etc/xivo-amid/config.yml

xivo-auth

• Default configuration directory: /etc/xivo-auth/conf.d

• Default configuration file: /etc/xivo-auth/config.yml

xivo-ctid

• Default configuration directory: /etc/xivo-ctid/conf.d

• Default configuration file: /etc/xivo-ctid/config.yml

xivo-dao

• Default configuration directory: /etc/xivo-dao/conf.d

• Default configuration file: /etc/xivo-dao/config.yml

This configuration is read by many XiVO programs in order to connect to the Postgres database of XiVO.

xivo-dird-phoned

• Default configuration directory: /etc/xivo-dird-phoned/conf.d

• Default configuration file: /etc/xivo-dird-phoned/config.yml

xivo-websocketd

• Default configuration directory: /etc/xivo-websocketd/conf.d

• Default configuration file: /etc/xivo-websocketd/config.yml

xivo_ring.conf

• Path: /etc/xivo/asterisk/xivo_ring.conf

• Purpose: This file can be used to change the ringtone played by the phone depending on the origin of the
call.

Warning: Note that this feature has not been tested for all phones and all call flows. This page describes how
you can customize this file but does not intend to list all validated call flows or phones.

This file xivo_ring.conf consists of :

• profiles of configuration (some examples for different brands are already included: [aastra], [snom]
etc.)

• one section named [number] where you apply the profile to an extension or a context etc.

Here is the process you should follow if you want to use/customize this feature :

1. Create a new profile, e.g.:

86 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

[myprofile-aastra]

2. Change the phonetype accordingly, in our example:

[myprofile-aastra]
phonetype = aastra

3. Chose the ringtone for the different type of calls (note that the ringtone names are brand-specific):

[myprofile-aastra]
phonetype = aastra
intern = <Bellcore-dr1>
group = <Bellcore-dr2>

4. Apply your profile, in the section [number]

• to a given list of extensions (e.g. 1001 and 1002):

1001@default = myprofile-aastra
1002@default = myprofile-aastra

• or to a whole context (e.g. default):

@default = myprofile-aastra

5. Restart xivo-agid service:

service xivo-agid restart

ipbx.ini

• Path: /etc/xivo/web-interface/ipbx.ini

• Purpose: This file specifies various configuration options and paths related to Asterisk and used by the web
interface.

Here is a partial glimpse of what can be configured in file ipbx.ini :

1. Enable/Disable modification of SIP line username and password:

[user]
readonly-idpwd = "true"

When editing a SIP line, the username and password fields cannot be modified via the web interface.
Set this option to false to enable the modification of both fields. This option is set to “true” by default.

Warning: This feature is not fully tested. It should be used only when absolutely necessary and with great
care.

1.6.8 Consul

The default consul installation in XiVO uses the configuration file in /etc/consul/xivo/*.json. All files
in this directory are installed with the package and should not be modified by the administrator. To use a different
configuration, the adminstrator can add it’s own configuration file at another location and set the new configura-
tion directory by creating a systemd unit drop-in file in the /etc/systemd/system/consul.service.d
directory.

The default installation generates a master token that can be retrieved in
/var/lib/consul/master_token. This master token will not be used if a new configuration is
supplied.

1.6. System 87

https://consul.io

XiVO Documentation, Release 16.08

Variables

The following environment variables can be overridden in a systemd unit drop-in file:

• CONFIG_DIR: the consul configuration directory

• WAIT_FOR_LEADER: should the “start” action wait for a leader ?

Example, in /etc/systemd/system/consul.service.d/custom.conf:

[Service]
Environment=CONFIG_DIR=/etc/consul/agent
Environment=WAIT_FOR_LEADER=no

Agent mode

It is possible to run consul on another host and have the local consul node run as an agent only.

To get this kind of setup up and running, you will need to follow the following steps.

Downloading Consul

For a 32 bits system

wget --no-check-certificate https://releases.hashicorp.com/consul/0.5.2/consul_0.5.2_linux_386.zip

For a 64 bits system

wget --no-check-certificate https://releases.hashicorp.com/consul/0.5.2/consul_0.5.2_linux_amd64.zip

Installing Consul on a new host

unzip consul_0.5.2_linux_386.zip

Or

unzip consul_0.5.2_linux_amd64.zip

mv consul /usr/bin/consul
mkdir -p /etc/consul/xivo
mkdir -p /var/lib/consul
adduser --system --group --quiet \

--shell /bin/sh \
--home /var/lib/consul \
--no-create-home --disabled-login \
--gecos "Consul discovery service" \
consul

Copying the consul configuration from the XiVO to a new host

On the new consul host, modify /etc/consul/xivo/config.json to include to following lines.

"bind_addr": "0.0.0.0",
"client_addr": "0.0.0.0",
"advertise_addr": "<consul-host>"

88 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

on the consul host
scp root@<xivo-host>:/lib/systemd/system/consul.service /lib/systemd/system
systemctl daemon-reload
scp -r root@<xivo-host>:/etc/consul /etc
scp -r root@<xivo-host>:/usr/share/xivo-certs /usr/share
consul agent -data-dir /var/lib/consul -config-dir /etc/consul/xivo/

Note: To start consul with the systemd unit file, you may need to change owner and group (consul:consul) for all
files inside /etc/consul, /usr/share/xivo-certs and /var/lib/consul

Adding the agent configuration

Create the file /etc/consul/agent/config.json with the following content

{
"acl_datacenter": "<node_name>",
"datacenter": "xivo",
"server": false,
"bind_addr": "0.0.0.0",
"advertise_addr": "<xivo_address>",
"client_addr": "127.0.0.1",
"bootstrap": false,
"rejoin_after_leave": true,
"data_dir": "/var/lib/consul",
"enable_syslog": true,
"disable_update_check": true,
"log_level": "INFO",
"ports": {

"dns": -1,
"http": -1,
"https": 8500

},
"retry_join": [

"<remote_host>"
],
"cert_file": "/usr/share/xivo-certs/server.crt",
"key_file": "/usr/share/xivo-certs/server.key"

}

• node_name: Arbitrary name to give this node, xivo-paris for example.

• remote_host: IP address of your new consul. Be sure the host is accessible from your XiVO and check
the firewall. See the documentation here.

• xivo_address: IP address of your xivo.

This file should be owned by consul user.

chown -R consul:consul /etc/consul/agent

Enabling the agent configuration

Add or modify /etc/systemd/system/consul.service.d/custom.conf to include the following
lines:

[Service]
Environment=CONFIG_DIR=/etc/consul/agent

Restart your consul server.

1.6. System 89

XiVO Documentation, Release 16.08

service consul restart

Updating the consul section of xivo-ctid

Add a file in /etc/xivo-ctid/conf.d/remote_consul.yml with the following content

rest_api:
http:
listen: 0.0.0.0

service_discovery:
advertise_address: <xivo-ctid-host>
check_url: http://<xivo-ctid-host>:9495/0.1/infos

• xivo-ctid-host: Hostname to reach xivo-ctid

1.6.9 Log Files

Every XiVO service has its own log file, placed in /var/log.

asterisk

The Asterisk log files are managed by logrotate.

It’s configuration files /etc/logrotate.d/asterisk and /etc/asterisk/logger.conf

The message log level is enabled by default in logger.conf and contains notices, warnings and errors. The
full log entry is commented in logger.conf and should only be enabled when verbose debugging is required.
Using this option in production would produce VERY large log files.

• Files location: /var/log/asterisk/*

• Number of archived files: 15

• Rotation frequence: Daily

xivo-agentd

• File location: /var/log/xivo-agentd.log

• Rotate configuration: /etc/logrotate.d/xivo-agentd

• Number of archived files: 15

• Rotation frequence: Daily

xivo-agid

• File location: /var/log/xivo-agid.log

• Rotate configuration: /etc/logrotate.d/xivo-agid

• Number of archived files: 15

• Rotation frequence: Daily

90 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

xivo-amid

• File location: /var/log/xivo-amid.log

• Rotate configuration: /etc/logrotate.d/xivo-amid

• Number of archived files: 15

• Rotation frequence: Daily

xivo-auth

• File location: /var/log/xivo-auth.log

• Rotate configuration: /etc/logrotate.d/xivo-auth

• Number of archived files: 15

• Rotation frequence: Daily

xivo-call-logd

• File location: /var/log/xivo-call-logd.log

• Rotate configuration: /etc/logrotate.d/xivo-call-logd

• Number of archived files: 15

• Rotation frequence: Daily

xivo-confd

• File location: /var/log/xivo-confd.log

• Rotate configuration: /etc/logrotate.d/xivo-confd

• Number of archived files: 15

• Rotation frequence: Daily

xivo-confgend

The xivo-confgend daemon output is sent to the file specified with the --logfile parameter when launched
with twistd.

The file location can be changed by customizing the xivo-confgend.service unit file.

• File location: /var/log/xivo-confgend.log

• Rotate configuration: /etc/logrotate.d/xivo-confgend

• Number of archived files: 15

• Rotation frequence: Daily

xivo-ctid

• File location: /var/log/xivo-ctid.log

• Rotate configuration: /etc/logrotate.d/xivo-ctid

• Number of archived log files: 15

• Rotation frequence: Daily

1.6. System 91

XiVO Documentation, Release 16.08

xivo-ctid-ng

• File location: /var/log/xivo-ctid-ng.log

• Rotate configuration: /etc/logrotate.d/xivo-ctid-ng

• Number of archived files: 15

• Rotation frequence: Daily

xivo-dird

• File location: /var/log/xivo-dird.log

• Rotate configuration: /etc/logrotate.d/xivo-dird

• Number of archived files: 15

• Rotation frequence: Daily

xivo-dird-phoned

• File location: /var/log/xivo-dird-phoned.log

• Rotate configuration: /etc/logrotate.d/xivo-dird-phoned

• Number of archived files: 15

• Rotation frequence: Daily

xivo-dxtora

• File location: /var/log/xivo-dxtora.log

• Rotate configuration: /etc/logrotate.d/xivo-dxtora

• Number of archived files: 15

• Rotation frequence: Daily

xivo-provd

• File location: /var/log/xivo-provd.log

• Rotate configuration: /etc/logrotate.d/xivo-provd

• Number of archived files: 15

• Rotation frequence: Daily

xivo-purge-db

• File location: /var/log/xivo-purge-db.log

• Rotate configuration: /etc/logrotate.d/xivo-purge-db

• Number of archived files: 15

• Rotation frequence: Daily

92 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

xivo-stat

• File location: /var/log/xivo-stat.log

• Rotate configuration: /etc/logrotate.d/xivo-stat

• Number of archived files: 15

• Rotation frequence: Daily

xivo-sysconfd

• File location: /var/log/xivo-sysconfd.log

• Rotate configuration: /etc/logrotate.d/xivo-sysconfd

• Number of archived files: 15

• Rotation frequence: Daily

xivo-upgrade

• File location: /var/log/xivo-upgrade.log

• Rotate configuration: /etc/logrotate.d/xivo-upgrade

• Number of archived files: 15

• Rotation frequence: Daily

xivo-web-interface

• File location: /var/log/xivo-web-interface/*.log

• Rotate configuration: /etc/logrotate.d/xivo-web-interface

• Number of archived files: 21

• Rotation frequence: Daily

xivo-websocketd

• File location: /var/log/xivo-websocketd.log

• Rotate configuration: /etc/logrotate.d/xivo-websocketd

• Number of archived files: 15

• Rotation frequence: Daily

1.6.10 NTP

XiVO has a NTP server, that must be synchronized to a reference server. This can be a public one or customized
for specific target networking architecture. XiVO’s NTP server is used by default as NTP server for the devices
time reference.

Usage

Show NTP service status:

1.6. System 93

XiVO Documentation, Release 16.08

service ntp status

Stop NTP service:

service ntp stop

Start NTP service:

service ntp start

Restart NTP service:

service ntp restart

Show NTP synchronization status:

ntpq -p

Configuring NTP service

1. Edit /etc/ntp.conf

2. Give your NTP reference servers:

server 192.168.0.1 # LAN existing NTP Server
server 0.debian.pool.ntp.org iburst dynamic # default in ntp.conf
server 1.debian.pool.ntp.org iburst dynamic # default in ntp.conf

3. If no reference server to synchronize to, add this to synchronize locally:

server 127.127.1.0 # local clock (LCL)
fudge 127.127.1.0 stratum 10 # LCL is not very reliable

4. Restart NTP service

5. Check NTP synchronization status.

Warning: If #5 shows that NTP doesn’t use NTP configuration in /etc/ntp.conf, maybe have you done
a dhclient for one of your network interface and the dhcp server that gave the IP address also gave a NTP
server address. Thus you might check if the file /var/lib/ntp/ntp.conf.dhcp exists, if yes, this is
used for NTP configuration prior to /etc/ntp.conf. Remove it and restart NTP, check NTP synchroniza-
tion status, then it should work.

1.6.11 Proxy Configuration

If you use XiVO behind an HTTP proxy, you must do a couple of manipulations for it to work correctly.

apt

Create the /etc/apt/apt.conf.d/90proxy file with the following content:

Acquire::http::Proxy "http://domain\username:password@proxyip:proxyport";

provd

Proxy information is set via the Configuration → Provisioning → General page.

94 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

dhcp-update

This step is needed if you use the DHCP server of the XiVO. Otherwise the DHCP configuration won’t be correct.

Proxy information is set via the /etc/xivo/dhcpd-update.conf file.

Edit the file and look for the [proxy] section.

xivo-fetchfw

This step is not needed if you don’t use xivo-fetchfw.

Proxy information is set via the /etc/xivo/xivo-fetchfw.conf file.

Edit the file and look for the [proxy] section.

1.6.12 Service Discovery

Overview

XiVO uses consul for service discovery. When a daemon is started, it registers itself on the configured consul
node.

Consul template may be used to generate the configuration files for each daemons that requires the availability of
another service. Consul template can also be used to reload the appropriate service.

1.6.13 Service Authentication

XiVO services expose more and more resources through REST API, but they also ensure that the access is re-
stricted to the authorized programs. For this, we use an authentication daemon who delivers authorizations via
tokens.

Call flow

Here is the call flow to access a REST resource of a XiVO service:

1. Create a username/password (also called service_id/service_key) with the right ACLs, via Web Services
Access.

2. Create a token with these credentials and the backend xivo-service.

3. Use this token to access the REST resource defined by the ACL.

Service Service who needs to access a REST resource.

xivo-{daemon} Server that exposes a REST resource. This resource must have an attached ACL.

xivo-auth Server that authenticates the Service and validates the required ACL with the token.

XiVO services directly use this system to communicate with each other, as you can see in their Web Services
Access.

1.6.14 xivo-auth

xivo-auth is a scalable, extendable and configurable authentication service. It uses an HTTP interface to emit to-
kens to users who can then use those tokens to identify and authenticate themselves with other services compatible
with xivo-auth.

The HTTP API reference is at http://api.xivo.io.

1.6. System 95

https://consul.io
https://github.com/hashicorp/consul-template
http://api.xivo.io

XiVO Documentation, Release 16.08

Fig. 1.29: Call flow of service authentication

xivo-auth HTTP API Changelog

16.02

• POST /0.1/token, field expiration: only integers are accepted, floats are now invalid.

• Experimental backend ldap_user_voicemail has been removed.

• New backend ldap_user has been added.

15.19

• POST /0.1/token do not accept anymore argument backend_args

15.17

• New backend ldap_user_voicemail has been added. WARNING this backend is EXPERIMEN-
TAL.

15.16

• HEAD and GET now take a new scope query string argument to check ACLs

• Backend interface method get_acls is now named get_consul_acls

• Backend interface method get_acls now returns a list of ACLs

• HEAD and GET can now return a 403 if an ACL access is denied

15.15

• POST /0.1/token accept new argument backend_args

96 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Signature of backend method get_ids() has a new argument args

• New method get_acls for backend has been added

• New backend service has been added

xivo-auth Developer’s Guide

Architecture

xivo-auth contains 4 major components, an HTTP interface, a celery worker, authentication backends and a consul
client. All operations are made through the HTTP interface, tokens are stored by consul as well as the persistence
for some of the data attached to tokens. The celery worker is used to schedule tasks that outlive the lifetime of the
xivo-auth process. Backends are used to test if a supplied username/password combination is valid and provide
the xivo-user-uuid.

xivo-auth is made of the following modules and packages.

plugins the plugin package contains the xivo-auth backends that are packaged with xivo-auth.

http The http module is the implementation of the HTTP interface.

• Validate parameters

• Calls the backend the check the user authentication

• Forward instructions to the token_manager

• Handle exceptions and return the appropriate status_code

controller The controller is the plumbin of xivo-auth, it has no business logic.

• Start the HTTP application

• Start the celery worker

• Load all enabled plugins

• Instanciate the token_manager

token The token modules contains the business logic of xivo-auth.

• Creates and delete tokens

• Creates ACLs for XiVO

• Schedule token expiration

• Read/write token data to consul

tasks The tasks module contains implementation of celery tasks that are executed by the worker.

• Called by the celery worker

• Forwards instructions to the token manager

extension This is a place holder for a global variable for the celery app. It will be removed and should not be
used.

Other modules that should not need documentation are helpers, config, interfaces

1.6. System 97

XiVO Documentation, Release 16.08

Plugins

xivo-auth is meant to be easy to extend. This section describes how to add features to xivo-auth.

Backends xivo-auth allows its administrator to configure one or many sources of authentication. Implementing
a new kind of authentication is quite simple.

1. Create a python module implementing the backend interface.

2. Install the python module with an entry point xivo_auth.backends

An example backend implementation is available here.

Stock Plugins Documentation

Backends Plugins

XiVO Admin Backend name: xivo_admin

Purpose: Authenticate a XiVO administrator. The login/password is configured in Configuration → Management
→ Users.

XiVO Service Backend name: xivo_service

Purpose: Authenticate a XiVO Web Services Access. The login/password is configured in Configuration → Man-
agement → Web Service Access.

XiVO User Backend name: xivo_user

Purpose: Authenticate a XiVO user. The login/password is configured in IPBX → Services → PBX Settings →
Users in the CTI client section.

LDAP Backend name: ldap_user

Purpose: Authenticate with an LDAP user.

For example, with the given configuration:

ldap:
uri: ldap://example.org
bind_dn: cn=xivo,dc=example,dc=org
bind_password: bindpass
user_base_dn: ou=people,dc=example,dc=org
user_login_attribute: uid
user_email_attribute: mail

When an authentication request is received for username alice and password userpass, the backend will:

1. Connect to the LDAP server at example.org

2. Do an LDAP “bind” operation with bind DN cn=xivo,dc=example,dc=org and password
bindpass

3. Do an LDAP “search” operation to find an LDAP user matching alice, using:

• the base DN ou=people,dc=example,dc=org

• the filter (uid=alice)

• a SUBTREE scope

4. If the search returns exactly 1 LDAP user, do an LDAP “bind” operation with the user’s DN and the pass-
word userpass

98 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-auth/blob/master/xivo_auth/interfaces.py
http://github.com/xivo-pbx/xivo-auth-example-backend

XiVO Documentation, Release 16.08

5. If the LDAP “bind” operation is successful, search in XiVO a user with an email matching the mail
attribute of the LDAP user

6. If a XiVO user is found, success

To use an anonymous bind instead, the following configuration would be used:

ldap:
uri: ldap://example.org
bind_anonymous: True
user_base_dn: ou=people,dc=example,dc=org
user_login_attribute: uid
user_email_attribute: mail

The backend can also works in a “no search” mode, for example with the following configuration:

ldap:
uri: ldap://example.org
user_base_dn: ou=people,dc=example,dc=org
user_login_attribute: uid
user_email_attribute: mail

When the server receives the same authentication request as above, it will directly do an LDAP “bind” operation
with the DN uid=alice,ou=people,dc=example,dc=org and password userpass, and continue at
step 5.

Note: User’s email and voicemail’s email are two separate things. This plugin only use the user’s email.

Configuration

uri the URI of the LDAP server. Can only contain the scheme, host and port of an LDAP URL.

user_base_dn the base dn of the user

user_login_attribute the attribute to login a user

user_email_attribute (optional) the attribute to match with the XiVO user’s email (default: mail)

bind_dn (optional) the bind DN for searching for the user DN.

bind_password (optional) the bind password for searching for the user DN.

bind_anonymous (optional) use anonymous bind for searching for the user DN (default: false)

Usage

xivo-auth is used through HTTP requests, using HTTPS. Its default port is 9497. As a user, the most common
operation is to get a new token. This is done with the POST method.

Alice retrieves a token using her username/password:

$ # Alice creates a new token, using the xivo_user backend, expiring in 10 minutes
$ curl -k -X POST -H 'Content-Type: application/json' -u 'alice:s3cre7' "https://localhost:9497/0.1/token" -d '{"backend": "xivo_user", "expiration": 600}';echo
{"data": {"issued_at": "2015-06-05T10:16:58.557553", "token": "1823c1ee-6c6a-0cdc-d869-964a7f08a744", "auth_id": "63f3dc3c-865d-419e-bec2-e18c4b118224", "xivo_user_uuid": "63f3dc3c-865d-419e-bec2-e18c4b118224", "expires_at": "2015-06-05T11:16:58.557595"}}

In this example Alice used here XiVO CTI client login alice and password s3cre7. The authentication source
is determined by the backend in the POST data.

Alice could also have specified an expiration time on her POST request. The expiration value is the number of
seconds before the token expires.

After retrieving her token, Alice can query other services that use xivo-auth and send her token to those service.
Those services can then use this token on Alice’s behalf to access her personal storage.

1.6. System 99

XiVO Documentation, Release 16.08

If Alice wants to revoke her token before its expiration:

$ curl -k -X DELETE -H 'Content-Type: application/json' "https://localhost:9497/0.1/token/1823c1ee-6c6a-0cdc-d869-964a7f08a744"

See http://api.xivo.io for more details about the HTTP API.

See Service Authentication for details about the authentication process.

Usage for services using xivo-auth

A service that requires authentication and identification can use xivo-auth to externalise the burden of authentica-
tion. The new service can then accept a token as part of its operations to authenticate the user using the service.

Once a service receives a token from one of its user, it will need to check the validity of that token. There are 2
forms of verification, one that only checks if the token is valid and the other returns information about this token’s
session if it is valid.

Checking if a token is valid:

$ curl -k -i -X HEAD -H 'Content-Type: application/json' "https://localhost:9497/0.1/token/1823c1ee-6c6a-0cdc-d869-964a7f08a744"
HTTP/1.1 204 NO CONTENT
Content-Type: text/html; charset=utf-8
Content-Length: 0
Date: Fri, 05 Jun 2015 14:49:50 GMT
Server: pcm-dev-0

$ # get more information about this token
$ curl -k -X GET -H 'Content-Type: application/json' "https://localhost:9497/0.1/token/1823c1ee-6c6a-0cdc-d869-964a7f08a744";echo
{"data": {"issued_at": "2015-06-05T10:16:58.557553", "token": "1823c1ee-6c6a-0cdc-d869-964a7f08a744", "auth_id": "63f3dc3c-865d-419e-bec2-e18c4b118224", "xivo_user_uuid": "63f3dc3c-865d-419e-bec2-e18c4b118224", "expires_at": "2015-06-05T11:16:58.557595"}}

Launching xivo-auth

usage: xivo-auth [-h] [-c CONFIG_FILE] [-u USER] [-d] [-f] [-l LOG_LEVEL]

optional arguments:
-h, --help show this help message and exit
-c CONFIG_FILE, --config-file CONFIG_FILE

The path to the config file
-u USER, --user USER User to run the daemon
-d, --debug Log debug messages
-f, --foreground Foreground, don't daemonize
-l LOG_LEVEL, --log-level LOG_LEVEL

Logs messages with LOG_LEVEL details. Must be one of:
critical, error, warning, info, debug. Default: None

HTTP API Reference

The complete HTTP API documentation is at http://api.xivo.io.

See also the xivo-auth HTTP API Changelog.

Development

See xivo-auth Developer’s Guide.

100 Chapter 1. Table of Contents

http://api.xivo.io
http://api.xivo.io

XiVO Documentation, Release 16.08

1.6.15 xivo-confd

xivo-confd is a HTTP server that provides a RESTful API service for configuring and managing basic resources
on a XiVO server.

The HTTP API reference is available at http://api.xivo.io.

Developer’s Guide (xivo-confd)

xivo-confd resources are organised through a plugin mechanism. There are 2 main plugin categories:

Resource plugins A plugin that manages a resource (e.g. users, extensions, voicemails, etc). A resource plugin
exposes the 4 basic CRUD operations (Create, Read, Update, Delete) in order to operate on a resource in a
RESTful manner.

Association plugins A plugin for associating or dissociating 2 resources (e.g a user and a line). An association
plugin exposes an HTTP action for associating (either POST or PUT) and another for dissociating (DELETE)

The following diagram outlines the most important parts of a plugin:

Fig. 1.30: Plugin architecture of xivo-confd

Resource Class that receives and handles HTTP requests. Resources use flask-restful for handling requests.

There are 2 kinds of resources: ListResource for root URLs and ItemResource for URLs that have an ID.
ListResource will handle creating a resource (POST) and searching through a list of available resources
(GET). ItemResource handles fetching a single item (GET), updating (PUT) and deleting (DELETE).

Service Class that handles business logic for a resource, such as what to do in order to get, create, update, or
delete a resource. Service classes do not manipulate data directly. Instead, they coordinate what to do via
other objects.

There are 2 kinds of services: CRUDService for basic CRUD operations in Resource plugins, and Associa-
tionService for association/dissociation operations in Association plugins.

Dao Data Access Object. Knows how to get data and how to manipulate it, such as SQL queries, files, etc.

1.6. System 101

http://api.xivo.io
http://flask-restful.readthedocs.org

XiVO Documentation, Release 16.08

Notifier Sends events after an operation has completed. An event will be sent in a messaging queue for each
CRUD operation. Certain resources also need to send events to other daemons in order to reload some
configuration data. (i.e. asterisk needs to reload the dialplan when an extension is updated)

Validator Makes sure that a resource’s data does not contain any errors before doing something with it. A
Validator can be used for validating input data or business rules.

1.6.16 XiVO dird

xivo-dird is the directory server for XiVO. It offers a simple REST interface to query all directories that are
configured. xivo-dird is extendable with plugins.

xivo-dird changelog

15.20

• The ldap plugins ldap_network_timeout default value has been incremented from 0.1 to 0.3 seconds

15.19

• Added the voicemail type in Views configuration

• Removed reverse endpoints in REST API:

– GET /0.1/directories/reverse/<profile>/me

15.18

• Added reverse endpoints in REST API:

– GET /0.1/directories/reverse/<profile>/<xivo_user_uuid>

– GET /0.1/directories/reverse/<profile>/me

15.17

• Added directories endpoints in REST API:

– GET /0.1/directories/input/<profile>/aastra

– GET /0.1/directories/lookup/<profile>/aastra

– GET /0.1/directories/input/<profile>/polycom

– GET /0.1/directories/lookup/<profile>/polycom

– GET /0.1/directories/input/<profile>/snom

– GET /0.1/directories/lookup/<profile>/snom

– GET /0.1/directories/lookup/<profile>/thomson

– GET /0.1/directories/lookup/<profile>/yealink

102 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

15.16

• Added more cisco endpoints in REST API:

– GET /0.1/directories/input/<profile>/cisco

• Endpoint /0.1/directories/lookup/<profile>/cisco accepts a new limit and offset
query string arguments.

15.15

• Added cisco endpoints in REST API:

– GET /0.1/directories/menu/<profile>/cisco

– GET /0.1/directories/lookup/<profile>/cisco

15.14

• Added more personal contacts endpoints in REST API:

– GET /0.1/personal/<contact_id>

– PUT /0.1/personal/<contact_id>

– POST /0.1/personal/import

– DELETE /0.1/personal

• Endpoint /0.1/personal accepts a new format query string argument.

15.13

• Added personal contacts endpoints in REST API:

– GET /0.1/directories/personal/<profile>

– GET /0.1/personal

– POST /0.1/personal

– DELETE /0.1/personal/<contact_id>

• Signature of backend method list() has a new argument args

• Argument args for backend methods list() and search() has a new key token_infos

• Argument args for backend method load() has a new key main_config

• Methods __call__() and lookup() of service plugin lookup take a new token_infos argument

15.12

• Added authentication on all REST API endpoints

• Service plugins receive the whole configuration, rather than only their own section

1.6. System 103

XiVO Documentation, Release 16.08

XiVO dird configuration

There are three sources of configuration for xivo-dird:

• the command line options

• the main configuration file

• the sources configuration directory

The command-line options have priority over the main configuration file options.

Main Configuration File

Default location: /etc/xivo-dird/config.yml. Format: YAML

The default location may be overwritten by the command line options.

Here’s an example of the main configuration file:

1 debug: False
2 foreground: False
3 log_filename: /var/log/xivo-dird.log
4 log_level: info
5 pid_filename: /var/run/xivo-dird/xivo-dird.pid
6 source_config_dir: /etc/xivo-dird/sources.d
7 user: www-data
8

9 rest_api:
10 wsgi_socket: /var/run/xivo-dird/xivo-dird.sock
11

12 enabled_plugins:
13 backends:
14 - csv
15 - ldap
16 - phonebook
17 services:
18 - lookup
19 views:
20 - cisco_view
21 - default_json
22

23 views:
24 displays:
25 switchboard_display:
26 -
27 title: Firstname
28 default: Unknown
29 field: firstname
30 type: name
31 -
32 title: Lastname
33 default: Unknown
34 field: lastname
35 type: name
36 default_display:
37 -
38 title: Firstname
39 field: fn
40 type: name
41 -
42 title: Location
43 default: Canada
44 field: country

104 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

45 -
46 title: Number
47 field: number
48 type: number
49 displays_phone:
50 default:
51 name:
52 - display_name
53 number:
54 -
55 field:
56 - phone
57 -
58 field:
59 - phone_mobile
60 name_format: "{name} (Mobile)"
61 profile_to_display:
62 default: default_display
63 switchboard: switchboard_display
64 profile_to_display_phone:
65 default: default
66

67 services:
68 lookup:
69 default:
70 sources:
71 - my_csv
72 - ldap_quebec
73 timeout: 0.5
74 switchboard:
75 sources:
76 - my_csv
77 - xivo_phonebook
78 - ldap_quebec
79 timeout: 1
80

81 sources:
82 my_source:
83 name: my_source
84 type: ldap
85 ldap_option1: value
86 ldap_option2: value
87 ...

Root section

debug Enable log debug messages. Overrides log_level. Default: False.

foreground Foreground, don’t daemonize. Default: False.

log_filename File to write logs to. Default: /var/log/xivo-dird.log.

log_level Logs messages with LOG_LEVEL details. Must be one of: critical, error, warning, info,
debug. Default: info.

pid_filename File used as lock to avoid multiple xivo-dird instances. Default:
/var/run/xivo-dird/xivo-dird.pid.

source_config_dir The directory from which sources configuration are read. See Sources Configuration. Default:
/etc/xivo-dird/sources.d.

user The owner of the process. Default: www-data.

1.6. System 105

XiVO Documentation, Release 16.08

rest_api section

wsgi_socket The socket used for WSGI communications (between nginx and xivo-dird). Default:
/var/run/xivo-dird/xivo-dird.sock.

enabled_plugins section This sections controls which plugins are to be loaded at xivo-dird startup. All plugin
types must have at least one plugin enabled, or xivo-dird will not start. For back-end plugins, sources using a
back-end plugin that is not enabled will be ignored.

views section

displays A dictionary describing the content of each display. The key is the display’s name, and the value are the
display’s content.

The display content is a list of fields. Each field is a dictionary with the following keys:

• title: The label of the field

• default: The default value of the field

• type: An arbitrary identifier of the field. May be used by consumers to identify the field without
matching the label. For meaningful values inside XiVO, see Integration of XiVO dird with the rest of
XiVO.

• field: the key of the data from the source that will be used for this field.

The display may be used by a plugin view to configure which fields are to be presented to the consumer.

displays_phone A dictionary describing the content of phone-related displays. Like displays, the key is the
display’s name and the value is the display’s content. These displays are used by phone-related view plugins,
like the cisco_view plugin.

The display content contains 2 keys, name and number.

The value of the name key is a list of source result fields. For a given source result, the first field that will
return a non-empty value will be used as the display name on the phone. For example, if name is configured
with ["display_name", "name"] and you have a source result with fields {"display_name":
"", "name": "Bob"}, then “Bob” will be displayed on the phone.

The value of the number key is a list of number item. Each item is composed of a dictionary containing at
least a field key, and optionally a name_format key. For example, if you have the following number
configuration:

name:
- display_name

number:
-

field:
- phone

-
field:

- phone_mobile
name_format: "{name} (Mobile)"

and you have a source result {"display_name": "Bob", "phone": "101",
"phone_mobile": "102"}, then 2 results will be displayed on your phone:

1. “Bob”, with number “101”

2. “Bob (Mobile)”, with number “102”

The name_format value is a python format string. There’s two substitution variables available, {name}
and {number}.

profile_to_display A dictionary associating a profile to a display. It allows xivo-dird to use the right display when
a consumer makes a query with a profile. The key is the profile name and the value is the display name.

106 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

profile_to_display_phone: A dictionary associating a profile to a phone display. This is similar to
profile_to_display, but only used by phone-related view plugins.

services section This section is a dictionary whose keys are the service plugin name and values are the configu-
ration of that service. Hence the content of the value is dependent of the service plugin. See the documentation of
the service plugin (Stock Plugins Documentation).

sources section This section is a dictionary whose keys are the source name and values are the configuration for
that source. See the Sources Configuration section for more details about source configuration.

Sources Configuration

There are two ways to configure sources:

• in the sources section of the main configuration

• in files of a directory, one file for each source:

– Default directory location /etc/xivo-dird/sources.d

– Files format: YAML

– File names are ignored

– Each file listed in this directory will be read and used to create a data source for xivo-dird.

Here is an example of a CSV source configuration in its own file:

1 type: csv
2 name: my_contacts_in_a_csv_file
3 file: /usr/local/share/my_contacts.csv
4 unique_column: id
5 searched_columns:
6 - fn
7 - ln
8 format_columns:
9 name: "{fn} {ln}"

10 number: "{num}"

This is strictly equivalent in the main configuration file:

1 sources:
2 my_contacts_in_a_csv_file:
3 type: csv
4 name: my_contacts_in_a_csv_file
5 file: /usr/local/share/my_contacts.csv
6 unique_column: id
7 searched_columns:
8 - fn
9 - ln

10 source_to_display_columns:
11 ln: lastname
12 fn: firstname
13 num: number

type the type of the source. It must be the same than the name of one of the enabled back-end plugins.

name is the name of this given configuration. The name is used to associate the source to profiles. The value is
arbitrary, but it must be unique across all sources.

Warning: Changing the name of the source will make all favorites in that source disappear. There is currently
no tool to help you migrate favorites between source names, so choose your source names carefully.

1.6. System 107

XiVO Documentation, Release 16.08

The other options are dependent on the source type (the back-end used). See the documentation of the back-end
plugin (Stock Plugins Documentation). However, the following keys should be present in all source configurations:

first_matched_columns (optional) the columns used for the reverse lookup. Any column having the search term
will be a reverse lookup result.

format_columns (optional) a mapping between result fields and a format string. The new key will be added to
the result, if this name already exists in the result, it will be replaced with the new value. The syntax is a
python format string. See https://docs.python.org/2/library/string.html#formatspec for a complete reference.

searched_columns (optional) the columns used for the lookup. Any column containing the search term substring
will be a lookup result.

unique_column (optional) This column is what makes an entry unique in this source. The unique_column
is used to build the uid that is passed to the list method to fetch a list of results by unique ids. This is
necessary for listing and identifying favorites.

XiVO dird developer’s guide

Fig. 1.31: xivo-dird startup flow

108 Chapter 1. Table of Contents

https://docs.python.org/2/library/string.html#formatspec

XiVO Documentation, Release 16.08

The XiVO dird architecture uses plugins as extension points for most of its job. It uses stevedore to do the plugin
instantiation and discovery and ABC classes to define the required interface.

Plugins in xivo-dird use setuptools’ entry points. That means that installing a new plugin to xivo-dird requires an
entry point in the plugin’s setup.py. Each entry point’s namespace is documented in the appropriate documentation
section. These entry points allow xivo-dird to be able to discover and load extensions packaged with xivo-dird or
installed separately.

Each kind of plugin does a specific job. There are three kinds of plugins in dird.

1. Back-End

2. Service

3. View

Fig. 1.32: xivo-dird HTTP query

All plugins are instantiated by the core. The core then keeps a catalogue of loaded extensions that can be supplied
to other extensions.

The following setup.py shows an example of a python library that add a plugin of each kind to xivo-dird:

1.6. System 109

http://docs.openstack.org/developer/stevedore/
https://docs.python.org/2/library/abc.html

XiVO Documentation, Release 16.08

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 from setuptools import setup
5 from setuptools import find_packages
6

7

8 setup(
9 name='XiVO dird plugin sample',

10 version='0.0.1',
11

12 description='An example program',
13

14 packages=find_packages(),
15

16 entry_points={
17 'xivo_dird.services': [
18 'my_service = dummy:DummyServicePlugin',
19],
20 'xivo_dird.backends': [
21 'my_backend = dummy:DummyBackend',
22],
23 'xivo_dird.views': [
24 'my_view = dummy:DummyView',
25],
26 }
27)

Back-End

Back-ends are used to query directories. Each back-end implements a way to query a given directory. Each
instance of a given back-end is called a source. Sources are used by the services to get results from each configured
directory.

Given one LDAP back-end, I can configure a source from the LDAP at alpha.example.com and another source
from the other LDAP at beta.example.com. Both of these sources use the LDAP back-end.

Implementation details

• Namespace: xivo_dird.backends

• Abstract source plugin: BaseSourcePlugin

• Methods:

– name: the name of the source, typically retrieved from the configuration injected to load()

– load(args): set up resources used by the plugin, depending on the config. args is a dictionary
containing:

* key config: the source configuration for this instance of the back-end

* key main_config: the whole configuration of xivo-dird

– unload(): free resources used by the plugin.

– search(term, args): The search method returns a list of dictionary.

* Empty values should be None, instead of empty string.

* args is a dictionary containing:

· key token_infos: data associated to the authentication token (see xivo-auth)

– first_match(term, args): The first_match method returns a dictionary.

110 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-dird/blob/master/xivo_dird/plugins/base_plugins.py#L67

XiVO Documentation, Release 16.08

* Empty values should be None, instead of empty string.

* args is a dictionary containing:

· key token_infos: data associated to the authentication token (see xivo-auth)

– list(uids, args): The list method returns a list of dictionary from a list of uids. Each uid is a
string identifying a contact within the source.

* args is a dictionary containing:

· key token_infos: data associated to the authentication token (see xivo-auth)

See Sources Configuration. The implementation of the back-end should take these values into account and return
results accordingly.

Example The following example add a backend that will return random names and number.

dummy.py:

1 # -*- coding: utf-8 -*-
2

3 import logging
4

5 logger = logging.getLogger(__name__)
6

7 class DummyBackendPlugin(object):
8

9 def name(self):
10 return 'my_local_dummy'
11

12 def load(self, args):
13 logger.info('dummy backend loaded')
14

15 def unload(self):
16 logger.info('dummy backend unloaded')
17

18 def search(self, term, args):
19 nb_results = random.randint(1, 20)
20 return _random_list(nb_results)
21

22 def list(self, unique_ids):
23 return _random_list(len(unique_ids))
24

25 def _random_list(self, nb_results):
26 columns = ['Firstname', 'Lastname', 'Number']
27 return [_random_entry(columns) for _ in xrange(nb_results)]
28

29 def _random_entry(self, columns):
30 random_stuff = [_random_string() for _ in xrange(len(columns))]
31 return dict(zip(columns, random_stuff))
32

33 def _random_string(self):
34 return ''.join(random.choice(string.lowercase) for _ in xrange(5))

Service

Service plugins add new functionality to the dird server. These functionalities are available to views. When loaded,
a service plugin receives its configuration and a dictionary of available sources.

Some service examples that come to mind include:

• A lookup service to search through all configured sources.

1.6. System 111

XiVO Documentation, Release 16.08

• A reverse lookup service to search through all configured sources and return a specific field of the first
matching result.

Implementation details

• Namespace: xivo_dird.services

• Abstract service plugin: BaseServicePlugin

• Methods:

– load(args): set up resources used by the plugin, depending on the config. args is a dictionary
containing:

* key config: the whole configuration file in dict form

* key sources: a dictionary of source names to sources

load must return the service object, which is any kind of python object.

– unload(): free resources used by the plugin.

Example The following example adds a service that will return an empty list when used.

dummy.py:

1 # -*- coding: utf-8 -*-
2

3 import logging
4

5 from xivo_dird import BaseServicePlugin
6

7 logger = logging.getLogger(__name__)
8

9 class DummyServicePlugin(BaseServicePlugin):
10 """
11 This plugin is responsible fow instantiating and returning the
12 DummyService. It manages its life time and should take care of
13 its cleanup if necessary
14 """
15

16 def load(self, args):
17 """
18 Ignores all provided arguments and instantiate a DummyService that
19 is returned to the core
20 """
21 logger.info('dummy loaded')
22 self._service = DummyService()
23 return self._service
24

25 def unload(self):
26 logger.info('dummy unloaded')
27

28

29 class DummyService(object):
30 """
31 A very dumb service that will return an empty list every time it is used
32 """
33

34 def list(self):
35 """
36 This function must be called explicitly from the view, `list` is not a
37 special method name for xivo-dird
38 """
39 return []

112 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-dird/blob/master/xivo_dird/plugins/base_plugins.py#L21

XiVO Documentation, Release 16.08

View

View plugins add new routes to the HTTP application in xivo-dird, in particular the REST API of xivo-dird: they
define the URLs to which xivo-dird will respond and the formatting of data received and sent through those URLs.

For example, we can define a REST API formatted in JSON with one view and the same API formatted in XML
with another view. Supporting the directory function of a phone is generally a matter of adding a new view for the
format that the phone consumes.

Implementation details

• Namespace: xivo_dird.views

• Abstract view plugin: BaseViewPlugin

• Methods:

– load(args): set up resources used by the plugin, depending on the config. Typically, register routes
on Flask. Those routes would typically call a service. args is a dictionary containing:

* key config: the section of the configuration file for all views in dict form

* key services: a dictionary of services, indexed by name, which may be called from a route

* key http_app: the Flask application instance

* key rest_api: a Flask-RestFul Api instance

– unload(): free resources used by the plugin.

Example The following example adds a simple view: GET /0.1/directories/ping answers
{"message": "pong"}.

dummy.py:

1 # -*- coding: utf-8 -*-
2

3 import logging
4

5 from flask_restful import Resource
6

7 logger = logging.getLogger(__name__)
8

9

10 class PingViewPlugin(object):
11

12 name = 'ping'
13

14 def __init__(self):
15 logger.debug('dummy view created')
16

17 def load(self, args):
18 logger.debug('dummy view args: %s', args)
19

20 args['rest_api'].add_resource(PingView, '/0.1/directories/ping')
21

22 def unload(self):
23 logger.debug('dummy view unloaded')
24

25

26 class PingView(Resource):
27 """
28 Simple API using Flask-Restful: GET /0.1/directories/ping answers "pong"
29 """
30

1.6. System 113

https://github.com/xivo-pbx/xivo-dird/blob/master/xivo_dird/plugins/base_plugins.py#L52
http://flask.pocoo.org/
http://flask-restful.readthedocs.org/en/latest/quickstart.html#a-minimal-api

XiVO Documentation, Release 16.08

31 def get(self):
32 return {'message': 'pong'}

Stock Plugins Documentation

View Plugins

default_json View name: default_json

Purpose: present directory entries in JSON format. The format is detailed in http://api.xivo.io.

headers View name: headers

Purpose: List headers that will be available in results from default_json view.

personal_view View name: personal_view

Purpose: Expose REST API to manage personal contacts (create, delete, list).

aastra_view View name: aastra_view

Purpose: Expose REST API to search in configured directories for Aastra phone.

cisco_view View name: cisco_view

Purpose: Expose REST API to search in configured directories for Cisco phone (see CiscoIP-
Phone_XML_Objects).

polycom_view View name: polycom_view

Purpose: Expose REST API to search in configured directories for Polycom phone.

snom_view View name: snom_view

Purpose: Expose REST API to search in configured directories for Snom phone.

thomson_view View name: thomson_view

Purpose: Expose REST API to search in configured directories for Thomson phone.

yealink_view View name: yealink_view

Purpose: Expose REST API to search in configured directories for Yealink phone.

Service Plugins

lookup Service name: lookup

Purpose: Search through multiple data sources, looking for entries matching a word.

Configuration Example (excerpt from the main configuration file):

114 Chapter 1. Table of Contents

http://api.xivo.io
http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/8_5_1/xsi_dev_guide/xmlobjects.html
http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/8_5_1/xsi_dev_guide/xmlobjects.html

XiVO Documentation, Release 16.08

1 services:
2 lookup:
3 default:
4 sources:
5 - my_csv
6 timeout: 0.5

The configuration is a dictionary whose keys are profile names and values are configuration specific to that profile.

For each profile, the configuration keys are:

sources The list of source names that are to be used for the lookup

timeout The maximum waiting time for an answer from any source. Results from sources that take longer to
answer are ignored. Default: no timeout.

favorites Service name: favorites

Purpose: Mark/unmark contacts as favorites and get the list of all favorites.

personal Service name: personal

Purpose: Add, delete, list personal contacts of users.

The personal service needs a working Consul installation to store personal contacts.

Configuration Example (excerpt from the main configuration file):

1 services:
2 favorites:
3 default:
4 sources:
5 - my_csv
6 timeout: 0.5

The configuration is a dictionary whose keys are profile names and values are configuration specific to that profile.

For each profile, the configuration keys are:

sources The list of source names that are to be used for the lookup

timeout The maximum waiting time for an answer from any source. Results from sources that take longer to
answer are ignored. Default: no timeout.

reverse Service name: reverse

Purpose: Search through multiple data sources, looking for the first entry matching an extension.

Configuration Example:

1 services:
2 reverse:
3 default:
4 sources:
5 - my_csv
6 timeout: 1

The configuration is a dictionary whose keys are profile names and values are configuration specific to that profile.

For each profile, the configuration keys are:

sources The list of source names that are to be used for the reverse lookup

1.6. System 115

XiVO Documentation, Release 16.08

timeout The maximum waiting time for an answer from any source. Results from sources that take longer to
answer are ignored. Default: 1.

Back-end Configuration

This sections completes the Sources Configuration section.

csv Back-end name: csv

Purpose: read directory entries from a CSV file.

Limitations:

• the CSV delimiter is not configurable (currently: , (comma)).

Configuration Example (a file inside source_config_dir):

1 type: csv
2 name: my_csv
3 file: /var/tmp/test.csv
4 unique_column: id
5 searched_columns:
6 - fn
7 - ln
8 first_matched_columns:
9 - num

10 format_columns:
11 lastname: "{ln}"
12 firstname: "{fn}"
13 number: "{num}"

With the CSV file:

1 id,fn,ln,num
2 1,Alice,Abrams,55553783147
3 2,Bob,Benito,5551354958
4 3,Charles,Curie,5553132479

file the absolute path to the CSV file

CSV web service Back-end name: csv_ws

Purpose: search using a web service that returns CSV formatted results.

Given the following configuration, xivo-dird would call “https://example.com:8000/ws-
phonebook?firstname=alice&lastname=alice” for a lookup for the term “alice”.

Configuration Example (a file inside source_config_dir):

1 type: csv_ws
2 name: a_csv_web_service
3 lookup_url: "https://example.com:8000/ws-phonebook"
4 list_url: "https://example.com:8000/ws-phonebook"
5 verify_certificate: False
6 searched_columns:
7 - firstname
8 - lastname
9 first_matched_columns:

10 - exten
11 delimiter: ","
12 timeout: 16

116 Chapter 1. Table of Contents

https://example.com:8000/ws-phonebook?firstname=alice&lastname=alice
https://example.com:8000/ws-phonebook?firstname=alice&lastname=alice

XiVO Documentation, Release 16.08

13 unique_column: id
14 format_columns:
15 number: "{exten}"

lookup_url the URL used for directory searches.

list_url (optional) the URL used to list all available entries. This URL is used to retrieve favorites.

verify_certificate (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided.
Defaults to True.

delimiter (optional) the field delimiter in the CSV result. Default: ‘,’

timeout (optional) the number of seconds before the lookup on the web service is aborted. Default: 10.

ldap Back-end name: ldap

Purpose: search directory entries from an LDAP server.

Configuration Example (a file inside source_config_dir):

1 type: ldap
2 name: my_ldap
3 ldap_uri: ldap://example.org
4 ldap_base_dn: ou=people,dc=example,dc=org
5 ldap_username: cn=admin,dc=example,dc=org
6 ldap_password: foobar
7 ldap_custom_filter: (l=québec)
8 unique_column: entryUUID
9 searched_columns:

10 - cn
11 first_matched_columns:
12 - telephoneNumber
13 format_columns:
14 firstname: "{givenName}"
15 lastname: "{sn}"
16 number: "{telephoneNumber}"

ldap_uri the URI of the LDAP server. Can only contains the scheme, host and port part of an LDAP URL.

ldap_base_dn the DN of the entry at which to start the search

ldap_username (optional) the user’s DN to use when performing a “simple” bind.

Default to an empty string.

When both ldap_username and ldap_password are empty, an anonymous bind is performed.

ldap_password (optional) the password to use when performing a “simple” bind.

Default to an empty string.

ldap_custom_filter (optional) the custom filter is used to add more criteria to the filter generated by the back
end.

Example:

• ldap_custom_filter: (l=québec)

• searched_columns: [cn,st]

will result in the following filter being used for searches. (&(l=québec)(|(cn=*%Q*)(st=*%Q*)))

If only the custom filter is to be used, leave the searched_columns field empty.

This must be a valid LDAP filter, where the string %Q will be replaced by the (escaped) search term when
performing a search.

1.6. System 117

https://tools.ietf.org/html/rfc4515

XiVO Documentation, Release 16.08

Example: (&(o=ACME)(cn=*%Q*))

ldap_network_timeout (optional) the maximum time, in second, that an LDAP network operation can take. If
it takes more time than that, no result is returned.

Defaults to 0.3.

ldap_timeout (optional) the maximum time, in second, that an LDAP operation can take.

Defaults to 1.0.

unique_column (optional) the column that contains a unique identifier of the entry. This is necessary for listing
and identifying favorites.

For OpenLDAP, you should set this option to “entryUUID”.

For Active Directory, you should set this option to “objectGUID” and also set the “unique_column_format”
option to “binary_uuid”.

unique_column_format (optional) the unique column’s type returned by the queried LDAP server. Valid values
are “string” or “binary_uuid”.

Defaults to “string”.

phonebook Back-end name: phonebook

Purpose: search directory entries from a XiVO phone book.

Configuration Example (a file inside source_config_dir):

1 type: phonebook
2 name: my_phonebook
3 phonebook_url: https://example.org/service/ipbx/json.php/restricted/pbx_services/phonebook
4 phonebook_username: admin
5 phonebook_password: foobar
6 first_matched_columns:
7 - phonebooknumber.office.number
8 - phonebooknumber.mobile.number
9 format_columns:

10 firstname: "{phonebook.firstname}"
11 lastname: "{phonebook.lastname}"
12 number: "{phonebooknumber.office.number}"

phonebook_url (optional) the phonebook’s URL.

Default to http://localhost/service/ipbx/json.php/private/pbx_services/phonebook.

The URL to use differs depending on if you are accessing the phone book locally or remotely:

• Local: http://localhost/service/ipbx/json.php/private/pbx_services/phonebook

• Remote: https://example.org/service/ipbx/json.php/restricted/pbx_services/phonebook

phonebook_username (optional) the username to use in HTTP requests.

No HTTP authentication is tried when phonebook_username or phonebook_password are empty.

phonebook_password (optional) the password to use in HTTP requests.

phonebook_timeout (optional) the HTTP request timeout, in seconds.

Defaults to 1.0.

To be able to access the phone book of a remote XiVO, you must create a web services access user (Configuration
-> Web Services Access) on the remote XiVO.

118 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

personal Back-end name: personal

Purpose: search directory entries among users’ personal contacts

You should only have one source of type personal, because only one will be used to list personal contacts. The
personal backend needs a working Consul installation. This backend works with the personal service, which
allows users to add personal contacts.

The complete list of fields is in Personal contacts.

Configuration Example (a file inside source_config_dir):

1 type: personal
2 name: personal
3 first_matched_columns:
4 - number
5 format_columns:
6 firstname: "{firstname}"
7 lastname: "{lastname}"
8 number: "{number}"

unique_column is not configurable, its value is always id.

xivo Back-end name: xivo

Purpose: add users from a XiVO (may be remote) as directory entries

Configuration Example (a file inside source_config_dir):

1 type: xivo
2 name: my_xivo
3 confd_config:
4 https: True
5 host: xivo.example.com
6 port: 9486
7 version: 1.1
8 username: admin
9 password: password

10 timeout: 3
11 unique_column: id
12 first_matched_columns:
13 - exten
14 searched_columns:
15 - firstname
16 - lastname
17 format_columns:
18 number: "{exten}"
19 mobile: "{mobile_phone_number}"

confd_config:host the hostname of the XiVO (more precisely, of the xivo-confd service)

confd_config:port the port of the xivo-confd service (usually 9486)

confd_config:version the version of the xivo-confd API (should be 1.1)

Integration of XiVO dird with the rest of XiVO

Configuration values

Views In the directory displays (also in the main configuration file of xivo-dird, in the views section), the
following keys are interpreted and displayed in xlet people of the XiVO Client:

1.6. System 119

XiVO Documentation, Release 16.08

title The title will be shown as a header for the column

type

• agent: the field value will be ignored and replaced by an icon showing the status of the agent assigned
to the contact (e.g. green icon for logged agent, red icon for unlogged agent, ...)

• callable: a dropdown action on the number field will be added to call the field value.

• email: a dropdown action on the number field will be added to send an email to the field value.

• favorite: the boolean field value will be replaced by an icon showing if the status is favorite (yellow
star filled) or not (yellow star empty).

• name: a decoration will be added to the field value (typically a color dot) showing the presence status
of the contact (e.g. Disconnected, Available, Away, ...)

• number: only one number type can be defined per profile. The field value will be:

– added a decoration (typically a color dot) showing the status of the phone of the contact (e.g.
Offline, Ringing, Talking, ...)

– replaced with a button to call the contact with your phone when using the mouse

• personal: the boolean field value will be used to show a deletion action for the contact

• voicemail: the voicemail number of the contact

See People Xlet features Upgrade Notes for an example with screenshots.

Personal contacts Here are the list of available attributes of a personal contact:

• id

• company

• email

• fax

• firstname

• lastname

• mobile

• number

To be able to edit and delete personal contacts, you need a column of type personal in your display.

Adding the personal column to your display In the web interface under Services → CTI Server → Directories
→ Display filters.

1. Edit the filter on which you which to enable favorites.

2. Add a column with the type personal and display format personal.

Favorites Enabling favorites in the XiVO client.

• Add a unique_column to your sources.

• Add a favorite column to your display

120 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Adding a unique_column to your sources The web interface does not allow the administrator to specify
the unique_column and unique_column_format. To add these configuration options, add a file to /etc/xivo-
dird/sources.d containing the same name than the directory definition and all missing fields.

Example:

Given an ldap directory source using Active Directory named myactivedirectory:

Add a file /etc/xivo-dird/sources.d/myactivedirectory.yml with the following content to en-
able favorites on this source.

name: myactivedirectory # the same name than the directory definition
unique_column: objectGUID
unique_column_format: binary_uuid

Adding the favorite column to your display In the web interface under Services → CTI Server → Directories
→ Display filters.

1. Edit the filter on which you which to enable favorites.

2. Add a column with the type favorite and display format favorite.

Customizing sources Some configuration options are not available in the web interface. To add configuration
to a source that is configured in the web interface, create a file in /etc/xivo-dird/sources.d/ with the key name
matching your web interface configuration and add all missing fields.

Example:

adding a timeout configuration to a CSV web service source

name: my_csv_web_service
timeout: 16

Launching xivo-dird

usage: xivo-dird [-h] [-c CONFIG_FILE] [-d] [-f] [-l LOG_LEVEL] [-u USER]

optional arguments:
-h, --help show this help message and exit
-c CONFIG_FILE, --config-file CONFIG_FILE

The path where is the config file. Default: /etc/xivo-dird/config.yml
-d, --debug Log debug messages. Overrides log_level. Default:

1.6. System 121

XiVO Documentation, Release 16.08

False
-f, --foreground Foreground, don't daemonize. Default: False
-l LOG_LEVEL, --log-level LOG_LEVEL

Logs messages with LOG_LEVEL details. Must be one of:
critical, error, warning, info, debug. Default: info

-u USER, --user USER The owner of the process.

Terminology

Back-end

A back-end is a connector to query a specific type of directory, e.g. one back-end to query LDAP servers, another
back-end to query CSV files, etc.

Source

A source is an instance of a back-end. One backend may be used multiples times to query multiple directories of
the same type. For example, I could have the customer-csv and the employee-csv sources, each using the CSV
back-end, but reading a different file.

Plugins

A plugin is an extension point in xivo-dird. It is a way to add or modify the functionality of xivo-dird. There are
currently three types of plugins:

• Back-ends to query different types of directories (LDAP, CSV, etc.)

• Services to provide different directory actions (lookup, reverse lookup, etc.)

• Views to expose directory results in different formats (JSON, XML, etc.)

API

See http://api.xivo.io, section XiVO Dird.

1.6.17 XiVO dird phoned

xivo-dird-phoned is an interface to use directory service with phone. It offers a simple REST interface to authen-
ticate a phone and search result from XiVO dird.

Usage

xivo-dird-phoned is used through HTTP requests, using HTTP and HTTPS. Its default port is 9498 and 9499. As
a user, the common operation is to search through directory from a phone. The phone need to send 2 informations:

• xivo_user_uuid: The XiVO user uuid that the phone is associated. It’s used to search through personal
contacts (see personal).

• profile: The profile that the user is associated. It’s used to format results as configured.

Note: Since most phones dont’t support HTTPS, a small protection is to configure authorized_subnets in Config-
uration Files or in Services → General settings → Phonebook → Hosts

122 Chapter 1. Table of Contents

http://api.xivo.io

XiVO Documentation, Release 16.08

Launching xivo-dird-phoned

On command line, type xivo-dird-phoned -h to see how to use it.

1.6.18 Purge Logs

Keeping records of personal communications for long periods may be subject to local legislation, to avoid personal
data retention. Also, keeping too many records may become resource intensive for the server. To ease the removal
of such records, xivo-purge-db is a process that removes old log entries from the database. This allows
keeping records for a maximum period and deleting older ones.

By default, xivo-purge-db removes all logs older than a year (365 days). xivo-purge-db is run nightly.

Note: Please check the laws applicable to your country and modify days_to_keep (see below) in the config-
uration file accordingly.

Tables Purged

The following features are impacted by xivo-purge-db:

• Call Logs

• Call center statistics

• Switchboard Statistics

More technically, the tables purged by xivo-purge-db are:

• call_log

• cel

• queue_log

• stat_agent_periodic

• stat_call_on_queue

• stat_queue_periodic

• stat_switchboard_queue

Configuration File

We recommend to override the setting days_to_keep from /etc/xivo-purge-db/config.yml in a
new file in /etc/xivo-purge-db/conf.d/.

Warning: Setting days_to_keep to 0 will NOT disable xivo-purge-db, and will remove ALL logs
from your system.

See Configuration priority and /etc/xivo-purge-db/config.yml for more details.

Manual Purge

It is possible to purge logs manually. To do so, log on to the target XiVO server and run:

xivo-purge-db

You can specify the number of days of logs to keep. For example, to purge entries older than 365 days:

1.6. System 123

XiVO Documentation, Release 16.08

xivo-purge-db -d 365

Usage of xivo-purge-db:

usage: xivo-purge-db [-h] [-d DAYS_TO_KEEP]

optional arguments:
-h, --help show this help message and exit
-d DAYS_TO_KEEP, --days_to_keep DAYS_TO_KEEP

Number of days data will be kept in tables

Maintenance

After an execution of xivo-purge-db, postgresql’s Autovacuum Daemon should perform a VACUUM ANA-
LYZE automatically (after 1 minute). This command marks memory as reusable but does not actually free disk
space, which is fine if your disk is not getting full. In the case when xivo-purge-db hasn’t run for a long
time (e.g. upgrading to 15.11 or when days_to_keep is decreased), some administrator may want to perform a
VACUUM FULL to recover disk space.

Warning: VACUUM FULL will require a service interruption. This may take several hours depending on the
size of purged database.

You need to:

$ xivo-service stop
$ sudo -u postgres psql asterisk -c "VACUUM (FULL)"
$ xivo-service start

Archive Plugins

In the case you want to keep archives of the logs removed by xivo-purge-db, you may install plugins to xivo-
purge-db that will be run before the purge.

XiVO does not provide any archive plugin. You will need to develop plugins for your own need. If you want to
share your plugins, please open a pull request.

Archive Plugins (for Developers)

Each plugin is a Python callable (function or class constructor), that takes a dictionary of configuration as ar-
gument. The keys of this dictionary are the keys taken from the configuration file. This allows you to add
plugin-specific configuration in /etc/xivo-purge-db/conf.d/.

There is an example plugin in the xivo-purge-db git repo.

Example

Archive name: sample

Purpose: demonstrate how to create your own archive plugin.

Activate Plugin Each plugin needs to be explicitly enabled in the configuration of xivo-purge-db. Here is
an example of file added in /etc/xivo-purge-db/conf.d/:

1 enabled_plugins:
2 archives:
3 - sample

124 Chapter 1. Table of Contents

http://www.postgresql.org/docs/9.4/static/routine-vacuuming.html#AUTOVACUUM
http://www.postgresql.org/docs/9.4/static/sql-vacuum.html
http://www.postgresql.org/docs/9.4/static/sql-vacuum.html
https://github.com/xivo-pbx/xivo-purge-db/pulls
https://github.com/xivo-pbx/xivo-purge-db/tree/master/contribs

XiVO Documentation, Release 16.08

sample.py The following example will be save a file in /tmp/xivo_purge_db.sample with the following
content:

Save tables before purge. 365 days to keep!

1 sample_file = '/tmp/xivo_purge_db.sample'
2

3 def sample_plugin(config):
4 with open(sample_file, 'w') as output:
5 output.write('Save tables before purge. {0} days to keep!'.format(config['days_to_keep']))

Install sample plugin The following setup.py shows an example of a python library that adds a plugin to
xivo-purge-db:

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 from setuptools import setup
5 from setuptools import find_packages
6

7

8 setup(
9 name='xivo-purge-db-sample-plugin',

10 version='0.0.1',
11

12 description='An example program',
13 packages=find_packages(),
14 entry_points={
15 'xivo_purge_db.archives': [
16 'sample = xivo_purge_db_sample.sample:sample_plugin',
17],
18 }
19)

1.6.19 XiVO service

XiVO has many running services. To restart the whole stack, the xivo-service command can be used to make sure
the service is restarted in the right order.

Usage

Show all services status:

xivo-service status

Stop XiVO services:

xivo-service stop

Start XiVO services:

xivo-service start

Restart XiVO services:

xivo-service restart

The commands above will only act upon XiVO services. Appending an argument all will also act upon nginx
and postgresql. Example:

1.6. System 125

XiVO Documentation, Release 16.08

xivo-service restart all

UDP port 5060 will be closed while services are restarting.

1.6.20 XiVO sysconfd

xivo-sysconfd is the system configuration server for XiVO. It does quite a few different things; here’s a non
exhaustive list:

• configuring network (interfaces, hostname, DNS)

• configuring high availability

• staring/stopping/restarting services

• reloading asterisk configuration

• sending some events to components (xivo-agentd, xivo-agid and xivo-ctid)

Configuration File

Default location: /etc/xivo/sysconfd.conf. Format: INI.

The default location may be overwritten by the command line options.

Here’s an example of the configuration file:

[general]
xivo_config_path = /etc/xivo
templates_path = /usr/share/xivo-sysconfd/templates
custom_templates_path = /etc/xivo/sysconfd/custom-templates
backup_path = /var/backups/xivo-sysconfd

[resolvconf]
hostname_file = /etc/hostname
hostname_update_cmd = /etc/init.d/hostname.sh start
hosts_file = /etc/hosts
resolvconf_file = /etc/resolv.conf

[network]
interfaces_file = /etc/network/interfaces

[wizard]
templates_path = /usr/share/xivo-config/templates
custom_templates_path = /etc/xivo/custom-templates

[commonconf]
commonconf_file = /etc/xivo/common.conf
commonconf_cmd = /usr/sbin/xivo-update-config
commonconf_monit = /usr/sbin/xivo-monitoring-update

[openssl]
certsdir = /var/lib/xivo/certificates

[monit]
monit_checks_dir = /usr/share/xivo-monitoring/checks
monit_conf_dir = /etc/monit/conf.d

[request_handlers]
synchronous = true

[bus]
username = guest

126 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

password = guest
host = localhost
port = 5672
exchange_name = xivo
exchange_type = topic
exchange_durable = true

request_handlers section

synchronous If this option is true, when xivo-sysconfd receives a request to reload the dialplan for example, it
will wait for the dialplan reload to complete before replying to the request.

When this option is false, xivo-sysconfd reply to the request immediately.

Setting this option to false will speed up some operation (for example, editing a user from the web interface
or from xivo-confd), but this means that there will be a small delay (up to a few seconds in the worst case)
between the time you create your user and the time you can dial successfully its extension.

1.7 Ecosystem

1.7.1 Devices

In XiVO, there is two kind of devices:

Officially Supported Devices

The officially supported devices will be supported across upgrades and phone features are guaranteed to be sup-
ported on the latest version.

xivo-provd plugins for these devices can be installed from the “officially supported devices” repository.

Aastra

Aastra has been acquired by Mitel in 2014. In XiVO, the 6700 series and 6800 series phones are still referenced
as Aastra phones, for historical and compatibility reasons.

6731i 6735i 6737i 6739i 6755i 6757i
Provisioning Y Y Y Y Y Y
H-A Y Y Y Y Y Y
Directory XIVO Y Y Y Y Y Y
Funckeys 8 26 30 55 26 30

Supported programmable keys
User with supervision function Y Y Y Y Y Y
Group Y Y Y Y Y Y
Queue Y Y Y Y Y Y
Conference Room with supervision function Y Y Y Y Y Y
General Functions
Online call recording N N N N N N
Phone status Y Y Y Y Y Y
Sound recording Y Y Y Y Y Y
Call recording Y Y Y Y Y Y
Incoming call filtering Y Y Y Y Y Y

Continued on next page

1.7. Ecosystem 127

XiVO Documentation, Release 16.08

Table 1.2 – continued from previous page
6731i 6735i 6737i 6739i 6755i 6757i

Do not disturb Y Y Y Y Y Y
Group interception Y Y Y Y Y Y
Listen to online calls Y Y Y Y Y Y
Directory access Y Y Y Y Y Y
Filtering Boss - Secretary Y Y Y Y Y Y
Transfers Functions
Blind transfer HK Y Y HK Y Y
Indirect transfer HK Y Y HK Y Y
Forwards Functions
Disable all forwarding Y Y Y Y Y Y
Enable/Disable forwarding on no answer Y Y Y Y Y Y
Enable/Disable forwarding on busy Y Y Y Y Y Y
Enable/Disable forwarding unconditional Y Y Y Y Y Y
Voicemail Functions
Enable voicemail with supervision function Y Y Y Y Y Y
Reach the voicemail Y Y Y HK Y Y
Delete messages from voicemail Y Y Y Y Y Y
Agent Functions
Connect/Disconnect a static agent Y Y Y Y Y Y
Connect a static agent Y Y Y Y Y Y
Disconnect a static agent Y Y Y Y Y Y
Parking Functions
Parking Y Y Y Y Y Y
Parking position Y Y Y Y Y Y
Paging Functions
Paging Y Y Y Y Y Y

6700i series Supported expansion modules:

• Aastra® M670i (for Aastra® 35i/37i/39i/53i/55i/57i)

• Aastra® M675i (for Aastra® 35i/37i/39i/55i/57i)

6863i 6865i 6867i 6869i
Provisioning Y Y Y NT
H-A Y Y Y Y
Directory XIVO Y Y Y Y
Funckeys 0 8 38 68

Supported programmable keys
User with supervision function N Y Y Y
Group N Y Y Y
Queue N Y Y Y
Conference Room with supervision function N Y Y Y
General Functions
Online call recording N Y Y Y
Phone status N Y Y Y
Sound recording N Y Y Y
Call recording N Y Y Y
Incoming call filtering N Y Y Y
Do not disturb N Y Y Y
Group interception N Y Y Y
Listen to online calls N Y Y Y
Directory access N Y Y Y

Continued on next page

128 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Table 1.3 – continued from previous page
6863i 6865i 6867i 6869i

Filtering Boss - Secretary N Y Y Y
Transfers Functions
Blind transfer HK HK HK HK
Indirect transfer HK HK HK HK
Forwards Functions
Disable all forwarding N Y Y Y
Enable/Disable forwarding on no answer N Y Y Y
Enable/Disable forwarding on busy N Y Y Y
Enable/Disable forwarding unconditional N Y Y Y
Voicemail Functions
Enable voicemail with supervision function N Y Y Y
Reach the voicemail N Y Y Y
Delete messages from voicemail N Y Y Y
Agent Functions
Connect/Disconnect a static agent N Y Y Y
Connect a static agent N Y Y Y
Disconnect a static agent N Y Y Y
Parking Functions
Parking N Y Y Y
Parking position N Y Y Y
Paging Functions
Paging N Y Y Y

6800i series Supported expansion modules:

• Aastra® M680 (for Aastra® 6865i/6867i/6869i)

• Aastra® M685 (for Aastra® 6865i/6867i/6869i)

DECT Infrastructure

RFP35 RFP36
Provisioning N N
H-A N N
Directory XIVO N N
Funckeys 0 0

Cisco

ATAs

SPA122 SPA3102 SPA8000
Provisioning Y Y Y
H-A N N N
Directory XIVO N N N
Funckeys 0 0 0

For best results, activate DHCP Integration on your XiVO.

These devices can be used to connect faxes. For better success with faxes some parameters must be changed. You
can read the Using analog gateways section.

Note: If you want to manually resynchronize the configuration from the ATA device you should use the following
url:

http://ATA_IP/admin/resync?http://XIVO_IP:8667/CONF_FILE

where :

1.7. Ecosystem 129

XiVO Documentation, Release 16.08

• ATA_IP is the IP address of the ATA,

• XIVO_IP is the IP address of your XiVO,

• CONF_FILE is one of spa3102.cfg, spa8000.cfg

7905G 7906G 7911G 7912G 7920 7921G 7940G 7941G 7941G-GE 7942G 7960G 7961G 7962G
Provisioning N 1 Y Y Y Y Y Y Y Y Y Y Y Y
H-A N Y Y Y NT NT Y Y Y Y Y Y Y
Directory XIVO N FK FK FK N N FK FK FK FK FK FK FK
Funckeys N 4 4 4 0 0 1 1 1 1 5 5 5

Supported programmable keys
User with supervision function NT N N N N N Y Y Y Y Y Y Y
Group NT N N Y N N Y Y Y Y Y Y Y
Queue NT N N Y N N Y Y Y Y Y Y Y
Conference Room with supervision function NT N N N N N Y Y Y Y Y Y Y
General Functions
Online call recording NT N N N N N N N N N N N N
Phone status NT N N Y N N Y Y Y Y Y Y Y
Sound recording NT N N Y N N Y Y Y Y Y Y Y
Call recording NT N N N N N Y Y Y Y Y Y Y
Incoming call filtering NT N N N N N Y Y Y Y Y Y Y
Do not disturb NT N N SK N N SK SK SK SK SK SK SK
Group interception NT N N Y N N Y Y Y Y Y Y Y
Listen to online calls NT N N Y N N Y Y Y Y Y Y Y
Directory access NT N N Y N N Y Y Y Y Y Y Y
Filtering Boss - Secretary NT N N N N N Y Y Y Y Y Y Y
Transfers Functions
Blind transfer NT N N N N N N N N N N N N
Indirect transfer NT N N SK N N SK SK SK SK SK SK SK
Forwards Functions
Disable all forwarding NT N N Y N N Y Y Y Y Y Y Y
Enable/Disable forwarding on no answer NT N N Y N N Y Y Y Y Y Y Y
Enable/Disable forwarding on busy NT N N Y N N Y Y Y Y Y Y Y
Enable/Disable forwarding unconditional NT N N Y N N Y Y Y Y Y Y Y
Voicemail Functions
Enable voicemail with supervision function NT N N N N N N N N N N N N
Reach the voicemail NT N N SK N N HK HK HK NY HK HK HK
Delete messages from voicemail NT N N Y N N Y Y Y Y Y Y Y
Agent Functions
Connect/Disconnect a static agent NT N N Y N N Y Y Y Y Y Y Y
Connect a static agent NT N N Y N N Y Y Y Y Y Y Y
Disconnect a static agent NT N N Y N N Y Y Y Y Y Y Y
Parking Functions
Parking NT N N N N N N N N N N N N
Parking position NT N N N N N N N N N N N N
Paging Functions
Paging NT N N Y N N Y Y Y Y Y Y Y

Cisco 7900 Series Warning: These phones can only be used in SCCP mode. They are limited to the features supported in
XIVO’s SCCP implementation.

To install firmware for xivo-cisco-sccp plugins, you need to manually download the firmware files from the

1These devices are marked as Not Tested because other similar models using the same firmware have been tested instead. If these
devices ever present any bugs, they will be troubleshooted by the XiVO support team.

130 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Cisco website and save them in the /var/lib/xivo-provd/plugins/$plugin-name/var/cache
directory.

This directory is created by XiVO when you install the plugin (i.e. xivo-cisco-sccp-legacy). If you create the
directory manually, the installation will fail.

Warning: Access to Cisco firmware updates requires a Cisco account with sufficient privileges. The account
requires paying for the service and remains under the responsibility of the client or partner. Avencall is not
responsible for these firmwares and does not offer any updates.

For example, if you have installed the xivo-cisco-sccp-legacy plugin and you want to install the
7940-7960-fw, networklocale and userlocale_fr_FR package, you must:

• Go to http://www.cisco.com

• Click on “Log In” in the top right corner of the page, and then log in

• Click on the “Support” menu

• Click on the “Downloads” tab, then on “Voice & Unified Communications”

• Select “IP Telephony”, then “Unified Communications Endpoints”, then the model of your phone (in this
example, the 7940G)

• Click on “Skinny Client Control Protocol (SCCP) software”

• Choose the same version as the one shown in the plugin

• Download the file with an extension ending in ”.zip”, which is usually the last file in the list

• In the XiVO web interface, you’ll then be able to click on the “install” button for the firmware

The procedure is similar for the network locale and the user locale package, but:

• Instead of clicking on “Skinny Client Control Protocol (SCCP) software”, click on “Unified Communica-
tions Manager Endpoints Locale Installer”

• Click on “Linux”

• Choose the same version of the one shown in the plugin

• For the network locale, download the file named “po-locale-combined-network.cop.sgn”

• For the user locale, download the file named “po-locale-$locale-name.cop.sgn, for example “po-locale-
fr_FR.cop.sgn” for the “fr_FR” locale

• Both files must be placed in /var/lib/xivo-provd/plugins/$plugin-name/var/cache di-
rectory. Then install them in the XiVO Web Interface.

Note: Currently user and network locale 9.0.2 should be used for plugins xivo-sccp-legacy and xivo-cisco-sccp-
9.0.3

Digium

D40 D50 D70
Provisioning Y NYT Y
H-A Y NYT Y
Directory XIVO N NYT N
Funckeys 2 14 106
Supported programmable keys
User with supervision function N NYT N
Group Y NYT Y

Continued on next page

1.7. Ecosystem 131

http://www.cisco.com

XiVO Documentation, Release 16.08

Table 1.5 – continued from previous page
D40 D50 D70

Queue Y NYT Y
Conference Room with supervision function Y NYT Y
General Functions
Online call recording N NYT N
Phone status Y NYT Y
Sound recording Y NYT Y
Call recording Y NYT Y
Incoming call filtering Y NYT Y
Do not disturb HK NYT HK
Group interception Y NYT Y
Listen to online calls N NYT N
Directory access N NYT N
Filtering Boss - Secretary Y NYT Y
Transfers Functions
Blind transfer HK NYT HK
Indirect transfer HK NYT HK
Forwards Functions
Disable all forwarding Y NYT Y
Enable/Disable forwarding on no answer Y NYT Y
Enable/Disable forwarding on busy Y NYT Y
Enable/Disable forwarding unconditional Y NYT Y
Voicemail Functions
Enable voicemail with supervision function Y NYT Y
Reach the voicemail HK NYT HK
Delete messages from voicemail Y NYT Y
Agent Functions
Connect/Disconnect a static agent Y NYT Y
Connect a static agent Y NYT Y
Disconnect a static agent Y NYT Y
Parking Functions
Parking N NYT N
Parking position N NYT N
Paging Functions
Paging Y NYT Y

Note: Some function keys are shared with line keys

Particularities:

• For best results, activate DHCP Integration on your XiVO.

• Impossible to do directed pickup using a BLF function key.

• Only supports DTMF in RFC2833 mode.

• Does not work reliably with Cisco ESW520 PoE switch. When connected to such a switch, the D40 tends
to reboot randomly, and the D70 does not boot at all.

• It’s important to not edit the phone configuration via the phones’ web interface when using these phones
with XiVO.

• Paging doesn’t work.

132 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Mitel

The Mitel 6700 Series and 6800 Series SIP Phones are supported in XiVO. See the Aastra section.

Polycom

|SoundPoint IP |SoundStation IP |Business Media Phone
SPIP331 SPIP335 SPIP450 SPIP550 SPIP560 SPIP650 SPIP5000 SPIP6000 SPIP7000 VVX101 VVX201 VVX300 VVX310 VVX400 VVX410 VVX500 VVX600

Provisioning 1 NT 1 Y Y Y NT 1 NT 1 NT 1 Y NT 1 Y Y Y Y Y Y Y NYT
H-A N Y N Y N N N N N Y Y Y Y Y Y Y N
Directory XIVO N N N FK N N N N N N N FK FK FK FK FK N
Funckeys N 0 2 3 3 47 0 0 0 0 0 6 6 12 12 12 0

Supported programmable keys
User with supervision function NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Group NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Queue NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Conference Room with supervision function NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
General Functions
Online call recording NYT N NYT N NYT NYT NYT NYT NYT N N N N N N N NYT
Phone status NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Sound recording NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Call recording NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Incoming call filtering NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Do not disturb NYT SK NYT HK NYT NYT NYT NYT NYT SK SK SK SK SK SK SK NYT
Group interception NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Listen to online calls NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Directory access NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Filtering Boss - Secretary NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Transfers Functions
Blind transfer NYT SK NYT N NYT NYT NYT NYT NYT SK SK HK HK HK HK SK NYT
Indirect transfer NYT SK NYT HK NYT NYT NYT NYT NYT SK SK HK HK HK HK SK NYT
Forwards Functions
Disable all forwarding NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Enable/Disable forwarding on no answer NYT SK NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Enable/Disable forwarding on busy NYT SK NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Enable/Disable forwarding unconditional NYT SK NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Voicemail Functions
Enable voicemail with supervision function NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Reach the voicemail NYT SK NYT HK NYT NYT NYT NYT NYT SK SK HK HK HK HK SK NYT
Delete messages from voicemail NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Agent Functions
Connect/Disconnect a static agent NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Connect a static agent NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Disconnect a static agent NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Parking Functions
Parking NYT N NYT N NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Parking position NYT N NYT N NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT
Paging Functions
Paging NYT N NYT Y NYT NYT NYT NYT NYT Y Y Y Y Y Y Y NYT

Particularities:

• The latest Polycom firmwares can take a lot of time to download and install due to their size (~650 MiB).
For this reason, these files are explicitly excluded from the XiVO backups.

1.7. Ecosystem 133

XiVO Documentation, Release 16.08

• For directed call pickup to work via the BLF function keys, you need to make sure that the option Set caller-
id in dialog-info+xml notify is enabled on your XiVO. This option is located on the Services → IPBX →
General settings → SIP Protocol page, in the Signaling tab.

Also, directed call pickup via a BLF function key will not work if the extension number of the supervised
user is different from its caller ID number.

• Default password is 9486 (i.e. the word “xivo” on a telephone keypad).

• On the VVX101 and VVX201, to have the two line keys mapped to the same SIP line, create a custom
template with the following content:

{% extends 'base.tpl' -%}

{% block remote_phonebook -%}
{% endblock -%}

{% block model_specific_parameters -%}
reg.1.lineKeys="2"
{% endblock -%}

This is especially useful on the VVX101 since it supports a maximum of 1 SIP line and does not support
function keys.

Note: (XiVO HA cluster) BLF function key saved on the master node are not available.

Supported expansion modules:

• Polycom® VVX Color Expansion (for Polycom® VVX 300/310/400/410/500/600)

• Polycom® VVX Paper Expansion (for Polycom® VVX 300/310/400/410/500/600)

• Polycom® SoundPoint IP Backlit (for Polycom® SoundPoint 650)

Warning: Polycom® VVX® Camera are not supported.

Snom

370 710 715 720 D725 760 D765 821 870
Provisioning Y Y Y Y Y Y Y Y Y
H-A Y Y Y Y Y Y Y Y Y
Directory XIVO HK SK SK HK HK HK HK HK HK
Funckeys 12 5 5 18 18 16 16 12 15

Supported programmable keys
User with supervision function Y Y Y Y Y Y Y Y Y
Group Y Y Y Y Y Y Y Y Y
Queue Y Y Y Y Y Y Y Y Y
Conference Room with supervision function Y Y Y Y Y Y Y Y Y
General Functions
Online call recording N N N N N N N N N
Phone status Y Y Y Y Y Y Y Y Y
Sound recording Y Y Y Y Y Y Y Y Y
Call recording Y Y Y Y Y Y Y Y Y
Incoming call filtering Y Y Y Y Y Y Y Y Y
Do not disturb HK SK SK HK HK HK HK HK HK
Group interception Y Y Y Y Y Y Y Y Y
Listen to online calls Y Y Y Y Y Y Y Y Y

Continued on next page

134 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Table 1.7 – continued from previous page
370 710 715 720 D725 760 D765 821 870

Directory access Y Y Y Y Y Y Y Y Y
Filtering Boss - Secretary Y Y Y Y Y Y Y Y Y
Transfers Functions
Blind transfer Y SK SK HK HK HK HK HK HK
Indirect transfer Y SK SK HK HK HK HK HK HK
Forwards Functions
Disable all forwarding Y Y Y Y Y Y Y Y Y
Enable/Disable forwarding on no answer Y Y Y Y Y Y Y Y Y
Enable/Disable forwarding on busy Y Y Y Y Y Y Y Y Y
Enable/Disable forwarding unconditional Y Y Y Y Y Y Y Y Y
Voicemail Functions
Enable voicemail with supervision function Y Y Y Y Y Y Y Y Y
Reach the voicemail HK HK HK HK HK HK HK HK HK
Delete messages from voicemail Y Y Y Y Y Y Y Y Y
Agent Functions
Connect/Disconnect a static agent Y Y Y Y Y Y Y Y Y
Connect a static agent Y Y Y Y Y Y Y Y Y
Disconnect a static agent Y Y Y Y Y Y Y Y Y
Parking Functions
Parking Y N N N N N N Y Y
Parking position Y N N N N N N Y Y
Paging Functions
Paging Y Y Y Y Y Y Y Y Y

Supported expansion modules:

• Snom® Vision (for Snom® 7xx series and Snom® 8xx series)

• Snom® D7 (for Snom® 7xx series)

Note: For some models, function keys are shared with line keys

There’s the following known limitations/issues with the provisioning of Snom phones in XiVO:

• If you are using Snom phones with HA, you should not assign multiple lines to the same device.

• When using a D7 expansion module, the function key label will not be shown on the first reboot or resyn-
chronization. You’ll need to reboot or resynchronize the phone a second time for the label to be shown
properly.

• After a factory reset of a phone, if no language and timezone are set for the “default config device” in XiVO
→ Configuration → Provisioning → Template device, you will be forced to select a default language and
timezone on the phone UI.

Yealink

T19P T19P E2 T20P T21P T21P E2 T22P T26P T28P T32G T38G T40P T41P T42G T46G T48G W52P
Provisioning Y Y Y Y Y Y Y Y NT 1 Y Y Y Y Y Y Y
H-A Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y
Directory XIVO N Y N N Y N N N Y Y Y Y Y N Y Y
Funckeys 0 0 2 2 2 3 13 16 3 16 3 15 15 27 27 0

Supported programmable keys
User with supervision function N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N

Continued on next page

1.7. Ecosystem 135

XiVO Documentation, Release 16.08

Table 1.8 – continued from previous page
T19P T19P E2 T20P T21P T21P E2 T22P T26P T28P T32G T38G T40P T41P T42G T46G T48G W52P

Group N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Queue N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Conference Room with supervision function N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
General Functions
Online call recording N N N N N N N N NYT N N N N N N N
Phone status N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Sound recording N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Call recording N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Incoming call filtering N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Do not disturb N N Y SK SK SK SK SK NYT SK SK SK SK SK SK N
Group interception N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Listen to online calls N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Directory access N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Filtering Boss - Secretary N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Transfers Functions
Blind transfer SK SK HK HK HK HK HK HK NYT HK SK SK SK HK HK SK
Indirect transfer SK SK HK HK HK HK HK HK NYT HK SK SK SK HK HK SK
Forwards Functions
Disable all forwarding N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Enable/Disable forwarding on no answer N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Enable/Disable forwarding on busy N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Enable/Disable forwarding unconditional N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Voicemail Functions
Enable voicemail with supervision function N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Reach the voicemail N N HK HK HK HK HK HK NYT HK HK HK HK HK HK HK
Delete messages from voicemail N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Agent Functions
Connect/Disconnect a static agent N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Connect a static agent N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Disconnect a static agent N N Y Y Y Y Y Y NYT Y Y Y Y Y Y N
Parking Functions
Parking N N Y Y Y Y Y Y NYT N Y Y Y Y Y N
Parking position N N Y Y Y Y Y Y NYT N Y Y Y Y Y N
Paging Functions
Paging N N Y Y Y Y Y Y NYT N Y Y Y Y Y N

See also the list of community supported Yealink models.

Regarding the W52P (DECT), there is firmware for both the base station and the handset. The base and the
handset are probably going to work if they are not using the same firmware version, although this does not seem
to be officially recommended. By default, a base station will try to upgrade the firmware of an handset over the
air (OTA) if the following conditions are met:

• Handset with firmware 26.40.0.15 or later

• Base station with firmware 25.40.0.15 or later

• Handset with hardware 26.0.0.6 or later

Otherwise, you’ll have to manually upgrade the handset firmware via USB.

In all cases, you should consult the Yealink documentation on Upgrading W52x Handset Firmware.

Note: Some function keys are shared with line keys

Supported expansion modules:

136 Chapter 1. Table of Contents

http://forum.yealink.com/forum/showthread.php?tid=2489
http://www.yealink.com/Upload/W52P/2013124/Upgrading%20W52x%20Handset%20Firmware.zip

XiVO Documentation, Release 16.08

• Yealink® EXP38 (for Yealink® T26P/T28P)

• Yealink® EXP39 (for Yealink® T26P/T28P)

• Yealink® EXP40 (for Yealink® T46G/T48G)

Caption :

Community Supported Devices

The community supported devices are only supported by the community. In other words, maintenance, bug,
corrections and features are developed by members of the XiVO community. XiVO does not officially endorse
support for these devices.

xivo-provd plugins for these devices can be installed from the “community supported devices” repository.

Aastra

6700i and 9000i series:

Model Tested 1 Fkeys 2 XiVO HA 3

6730i No 8 Yes
6753i Yes 6 Yes
6757i Yes 30 Yes
9143i Yes 7 Yes
9480i No 6 Yes
9480CT No 6 Yes

Alcatel-Lucent

IP Touch series:

Model Tested 1 Fkeys 2 XiVO HA 3

4008 Extended Edition Yes 4 No
4018 Extended Edition Yes 4 No

Note that you must not download the firmware for these phones unless you agree to the fact it comes from a
non-official source.

For the plugin to work fully, you need these additional packages:

apt-get install p7zip python-pexpect telnet

Avaya

1200 series IP Deskphones (previously known as Nortel IP Phones):

Model Tested 1 Fkeys 2 XiVO HA 3

1220 IP Yes 0 No
1230 IP No 0 No

1Tested means the device has been tested by the XiVO development team and that the developers have access to this device.
2Fkeys is the number of programmable function keys that you can configure from the XiVO web interface. It is not necessarily the same

as the number of physical function keys the device has (for example, a 6757i has 12 physical keys but you can configure 30 function keys
because of the page system).

3XiVO HA means the device is confirmed to work with XiVO HA.

1.7. Ecosystem 137

XiVO Documentation, Release 16.08

Cisco

Cisco Small Business SPA300 series:

Model Tested 1 Fkeys 2 XiVO HA 3

SPA301 No 1 No
SPA303 No 3 No

Note: Function keys are shared with line keys for all SPA phones

Cisco Small Business SPA500 series:

Model Tested 1 Fkeys 2 XiVO HA 3

SPA501G Yes 8 No
SPA502G No 1 No
SPA504G Yes 4 No
SPA508G Yes 8 No
SPA509G No 12 No
SPA512G No 1 No
SPA514G No 4 No
SPA525G Yes 5 No
SPA525G2 No 5 No

The SPA500 expansion module is supported.

Cisco Small Business IP Phones (previously known as Linksys IP Phones)

Model Tested 1 Fkeys 2 XiVO HA 3

SPA901 No 1 No
SPA921 No 1 No
SPA922 No 1 No
SPA941 No 4 No
SPA942 Yes 4 No
SPA962 Yes 6 No

Note: You must install the firmware of each SPA9xx phones you are using since they reboot in loop when they
can’t find their firmware.

The SPA932 expansion module is supported.

ATAs:

Model Tested 1 Fkeys 2 XiVO HA 3

PAP2 No 0 No
SPA2102 No 0 No
SPA8800 No 0 No
SPA112 No 0 No

For best results, activate DHCP Integration on your XiVO.

Note: These devices can be used to connect Faxes. For better success with faxes some parameters must be
changed. You can read the Using analog gateways section.

Note: If you want to manually resynchronize the configuration from the ATA device you should use the following
url:

http://ATA_IP/admin/resync?http://XIVO_IP:8667/CONF_FILE

where :

138 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• ATA_IP is the IP address of the ATA,

• XIVO_IP is the IP address of your XiVO,

• CONF_FILE is one of spa2102.cfg, spa8000.cfg

Fanvil

Model Tested 1 Fkeys 2 XiVO HA 3

C62P Yes 5 Yes

Gigaset

Also known as Siemens.

Model Tested 1 Fkeys 2 XiVO HA 3

C470 IP No 0 No
C475 IP No 0 No
C590 IP No 0 No
C595 IP No 0 No
C610 IP No 0 No
C610A IP No 0 No
S675 IP No 0 No
S685 IP No 0 No
N300 IP No 0 No
N300A IP No 0 No
N510 IP PRO No 0 No

Jitsi

Model Tested 1 Fkeys 2 XiVO HA 3

Jitsi Yes — No

Panasonic

Panasonic KX-HTXXX series:

Model Tested 1 Fkeys 2 XiVO HA 3

KX-HT113 No — No
KX-HT123 No — No
KX-HT133 No — No
KX-HT136 No — No

Note: This phone is for testing for the moment

1.7. Ecosystem 139

XiVO Documentation, Release 16.08

Polycom

Model Tested 1 Fkeys 2 XiVO HA 3

SPIP320 No 0 No
SPIP321 No 0 No
SPIP330 No 0 No
SPIP430 No 0 No
SPIP501 Yes 0 No
SPIP600 No 0 No
SPIP601 No 0 No
SPIP670 No 47 No

SoundStation IP:

Model Tested 1 Fkeys 2 XiVO HA 3

SPIP4000 No 0 No

Others:

Model Tested 1 Fkeys 2 XiVO HA 3

VVX1500 No 0 No

Snom

Model Tested 1 Fkeys 2 XiVO HA 3

300 No 6 Yes
320 Yes 12 Yes
360 No — Yes
820 Yes 4 Yes
MP No — Yes
PA1 No 0 Yes

Note: For some models, function keys are shared with line keys

Warning: If you are using Snom phones with HA, you should not assign multiple lines to the same device.

There’s a known issue with the provisioning of Snom phones in XiVO:

• After a factory reset of a phone, if no language and timezone are set for the “default config device” in XiVO
→ Configuration → Provisioning → Template device, you will be forced to select a default language and
timezone on the phone UI.

Technicolor

Previously known as Thomson:

Model Tested 1 Fkeys 2 XiVO HA 3

ST2022 No — —
ST2030 Yes 10 Yes

Note: Function keys are shared with line keys

140 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Yealink

Model Tested 1 Fkeys 2 XiVO HA 3 Plugin
CP860 No 0 — xivo-yealink-v72
T23P No 3 — xivo-yealink-v80
T23G Yes 3 Yes xivo-yealink-v80
T27P Yes 21 Yes xivo-yealink-v80
T29G No 27 — xivo-yealink-v80
T49G Yes 29 Yes xivo-yealink-v80

Note: Some function keys are shared with line keys

Zenitel

Model Tested 1 Fkeys 2 XiVO HA 3

IP station Yes 1 No

The officially supported devices will be supported across upgrades and phone features are guaranteed to be sup-
ported on the latest version.

The community supported devices are only supported by the community. In other words, maintenance, bug,
corrections and features are developed by members of the XiVO community. XiVO does not officially endorse
support for these devices.

The next topics lists the officially and community supported devices. For each vendor, a table shows the various
features supported by XiVO. Here’s an example:

Model X Model Y Model Z
Provisioning Y Y Y
H-A Y Y Y
Directory XIVO N Y Y
Funckeys 0 2 8

Supported programmable keys
User with supervision function Y Y Y

The rows have the following meaning:

Provisioning Is the device supported by the auto-provisioning system ?

H-A Is the device supported by the high availability system ?

Directory XiVO Is the device supported by the remote directory ? In other word, is it possible to consult the
XiVO’s remote directory from the device ?

Funckeys How many function keys can be configured on the device from the XiVO web interface ?

The number of function keys that can be configured on a device is not necessarily the same as the number
of physical function keys the device has. For example, an Aastra 6757i has 12 physical keys but you can
configure 30 function keys because of the page system.

Inside a table, the following legend is used:

• Y = Yes / Supported

• N = No / Not supported

• NT = Not tested

• NYT = Not yet tested

Each table also contains a section about the supported function keys. In that section, the following legend can also
be used:

• FK = Funckey

1.7. Ecosystem 141

XiVO Documentation, Release 16.08

• SK = SoftKey

• HK = HardKey

• MN = Menu

Function keys work using the extensions in Services → Extensions. It is important to enable the function keys you
want to use. Also, the enable transfer option in the user configuration services tab must be enabled to use transfer
function keys.

1.8 Administration

1.8.1 Advanced Configuration

This section describes the advanced system configuration.

XiVO General Settings

XiVO offers the possibility to configure the general settings via the Configuration → Management → General
page.

Fig. 1.33: Configure XiVO General Settings

Live reload configuration permit to reload its configuration on command received from WEBI (this option is
enabled by default).

Telephony certificates

XiVO offers the possibility to create and manage X.509 certificates via the the Configuration → Management →
Certificates page.

These certificates can be used for:

• enabling SIP TLS

• enabling encryption between the CTI server and the XiVO clients

For the certificate used for HTTPS, see HTTPS certificate.

Creating certificates

You can add a certificate by clicking on the add button at the top right of the page. You’ll then be shown this page:

You should look at the examples if you don’t know which attributes to set when creating your certificates.

142 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.34: Adding a certificate

Removing certificates

When removing a certificate, you should remove all the files related to that certificates.

Warning: If you remove a certificate that is used somewhere in XiVO, then you need to manually reconfigure
that portion of XiVO.
For example, if you remove the certificate files used for SIP TLS, then you need to manually disable SIP TLS
or asterisk will look for certificate file but it won’t be able to find them.

Examples

In the following examples, if a field is not specified than you should leave it at its default value.

Creating certificates for SIP TLS You need to create both a CA certificate and a server certificate.

CA certificate:

• Name : phones-CA

• Certification authority (checkbox) : checked

• Autosigned : checked

• Valid end date : at least one month in the future

• Common name : the FQDN (Fully Qualified Domain Name) of your XiVO

• Organization : your organization’s name, or blank

• Email : your email or organization’s email

Server certificate:

• Name : phones

• Certification authority (select) : phones-CA

• Valid end date : at least one month in the future

1.8. Administration 143

XiVO Documentation, Release 16.08

• Common name : the FQDN of your XiVO

• Organization : your organization’s name, or blank

• Email : your email or organization’s email

Creating certificate for CTI server

• Name : xivo-ctid

• Autosigned : checked

• Valid end date : at least one month in the future

• Common name : the FQDN of your XiVO

• Organization : your organization’s name, or blank

• Email : your email or organization’s email

Warning: You must not set a password for the certificate. If the certificate is password protected, the CTI
server will not be able to use it.

LDAP

XiVO offers the possibility to integrate LDAP servers. Once configured properly, you’ll be able to search your
LDAP servers from your XiVO client and from your phones (if they support this feature).

Note: This page describes how to add LDAP servers as sources of contacts. For other sources of contacts, see
Directories.

Add a LDAP Server

You can add a LDAP server by clicking on the add button at the top right corner of the Configuration → Manage-
ment → LDAP Servers page. You’ll then be shown this page:

Enter the following information:

• Name: the server’s display name

• Host: the hostname or IP address

• Port: the port number (default: 389)

• Security layer: select SSL if it is activated on your server and you want to use it (default: disabled)

– SSL means TLS/SSL (doesn’t mean StartTLS) and port 636 should then be used

• Protocol version: the LDAP protocol version (default: 3)

Warning: When editing an LDAP server, you’ll have to restart the CTI server for the changes to be taken into
account.

Notes on SSL/TLS usage If you are using SSL with an LDAP server that is using a CA certificate from
an unknown certificate authority, you’ll have to put the certificate file as a single file ending with .crt into
/usr/local/share/ca-certificates and run update-ca-certificates.

You also need to make sure that the /etc/ldap/ldap.conf file contains a line TLS_CACERT
/etc/ssl/certs/ca-certificates.crt.

After that, restart spawn-fcgi with service spawn-fcgi restart.

144 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.35: Adding a LDAP server

Also, make sure to use the FQDN of the server in the host field when using SSL. The host field must match
exactly what’s in the CN attribute of the server certificate.

Add a LDAP Filter

Next thing to do after adding a LDAP server is to create a LDAP filter via the Services → IPBX configuration →
LDAP Filters page.

You can add a LDAP filter by clicking on the add button at the top right of the page. You’ll then be shown this
page:

Fig. 1.36: Adding a LDAP Filter

Enter the following information:

1.8. Administration 145

XiVO Documentation, Release 16.08

• Name: the filter’s display name

• LDAP server: the LDAP server this filter applies to

• User: the dn of the user used to do search requests

• Password: the password of the given user

• Base DN: the base dn of search requests

• Filter: if specified, it replace the default filter

Use a Custom Filter In some cases, you might have to use a custom filter for your search requests instead of
the default filter.

In custom filters, occurrence of the pattern %Q is replaced by what the user entered on its phone.

Here’s some examples of custom filters:

• cn=*%Q*

• &(cn=*%Q*)(mail=*@example.org)

• |(cn=*%Q*)(displayName=*%Q*)

Add a Directory Definition

The next step is to add a directory defintion for the LDAP filter you just created. See the directories section for
more information.

Here’s an example of an LDAP directory definition:

Fig. 1.37: Services → IPBX → IPBX configuration → LDAP filters

If a custom filter is defined in the LDAP filter configuration, the fields in direct match will be added to that filter
using an &. To only use the filter field of your LDAP filter configuration, do not add any direct match fields in
your directory definition.

Example:

146 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Given an LDAP filter with filter st=Canada

• Given a directory definition with a direct match cn,o

• Then the resulting filter when doing a search will be &(st=Canada)(|(cn=*%Q*)(o=*%Q*))

1.8.2 Boss Secretary Filter

The boss secretary filter allow to set a secretary or a boss role to a user. Filters can then be created to filter calls
directed to a boss using different strategies.

Quick Summary

In order to be able to use the boss secretary filter you have to :

• Select a boss role for one the users

• Select a secretary role for one ot the users

• Create a filter to set a strategy for this boss secretary filter

• Add a function key for the user boss and the user secretary

Defining a Role

The secretary or boss role can be set in the user’s configuration page under the service tab. To use this feature, at
least one boss and one secretary must be defined.

Creating a Filter

The filter is used to associate a boss to one or many secretaries and to set a ring strategy. The call filter is added in
the Services → IPBX → Call management → Call filters page.

Different ringing strategies can be applied :

• Boss rings first then all secretaries one by one

• Boss rings first then secretaries are all ringing simultaneously

• Secretaries ring one by one

• Secretaries are all ringing simultaneously

• Boss and secretaries are ringing simultaneously

• Change the caller id if the secretary wants to know which boss was initialy called

When one of serial strategies is used, the first secretary called is the last in the list. The order can be modified by
drag and drop in the list.

1.8. Administration 147

XiVO Documentation, Release 16.08

Usage

The call filter function can be activated and deactivated by the boss or the secretary using the *37 extension. The
extension is defined in IPBX services > Extensions.

The call filter has to be activated for each secretary if more than one is defined for a given boss.

The extension to use is *37<callfilter member id>.

In this example, you would set 2 Func Keys *373 and *374 on the Boss.

On the secretary Jina LaPlante you would set *373.

On the secretary Ptit Nouveau you would set *374.

148 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Function Keys

A more convenient way to active the boss secretary filter is to assign a function key on the boss’ phone or the
secretary’s phone. In the user’s configuration under Func Keys. A function key can be added for each secretaries
of a boss.

If supervision is activated, the key will light up when filter is activated for this secretary. If a secretary also has a
function key on the same boss/secretary combination the function key’s BLF will be in sync between each phones.

Warning: With SCCP phones, you must configure a custom Func Keys.

1.8.3 Call Completion

The call completion feature (or CCSS, for Call Completion Supplementary Services) in XiVO allows for a caller
to be automatically called back when a called party has become available.

1. To illustrate, let’s say Alice attempts to call Bob.

2. Bob is currently on a phone call with Carol, though, so Bob rejects the call from Alice

3. Alice then dials *40 to request call completion.

4. Once Bob has finished his phone call, Alice will be automatically called back by the system.

5. When she answers, Bob will be called on her behalf.

This feature has been introduced in XiVO in version 14.17.

Description

Call completion can be used in two scenarios:

• when the called party is busy (Call Completion on Busy Subscriber)

• when the called party doesn’t answer (Call Completion on No Response)

We have already discussed the busy scenario in the introduction section.

Let’s now illustrate the no answer scenario:

1. Alice attempts to call Bob.

2. Bob doesn’t answer the phone. Alternatively, Alice hangs up before Bob has the time to answer the call.

3. Alice then dial *40 to request call completion.

4. When Bob’s phone becomes busy and then is no longer busy, Alice is automatically called back.

5. When she answers, Bob will be called on her behalf.

The important thing to note here is step #4. Bob’s phone needs to become busy and then no longer busy for Alice
to be called back. This means that if Bob was away when Alice called him, but when he came back he did not
received nor placed any call, then Alice will not be called back.

In fact, in all scenarios, after call completion has been requested by the caller, the called phone needs to transition
from busy to no longer busy for the caller to be called back. This means that in the following scenario:

1. Alice attempts to call Bob.

2. Bob is currently on a phone call, so he doesn’t answer the call from Alice.

3. Bob finish his call a few seconds later.

4. Alice then dials *40 to request call completion (Bob is not busy anymore).

1.8. Administration 149

XiVO Documentation, Release 16.08

Then, for Alice to be called back, Bob needs to become busy and then not busy.

If Alice is busy when Bob becomes not busy, then the call completion callback will only happen after both Alice
and Bob are not busy.

When call completion is active, it can be cancelled by dialing the *40 extension.

Some timers governs the use of call completion. These are:

• offer timer: the time the caller has to request call completion. Defaults to 30 (seconds).

• busy available timer: when call completion on busy subscriber is requested, if this timer expires before
the called party becomes available, then the call completion attempt will be cancelled. Defaults to 900
(seconds).

• no response available timer: similar to the “busy available timer”, but when call completion on no response
is requested. Defaults to 900 (seconds).

• recall timer: when the caller who requested call completion is called back, how long the original caller’s
phone rings before giving up. Defaults to 30 (seconds).

It’s currently impossible to modify the value of these timers in XiVO.

Special Scenarios

There are four special scenarios:

• the call completion will not activate

• the call completion will activate and call back for the original called party

• the call completion will activate and call back for the rerouted called party

• the call completion will activate and call back for the original called party but fail to join him

Call completion will not activate It is not possible to activate call completion in the following two scenarios.

First scenario: Alice tries to call Bob, but Bob has currently reached its “simultaneous calls” limit. When activating
call completion, Alice hears that the call completion can not be activated.

Note: The “simultaneous calls” option is configured per user via the XiVO web interface.

Second scenario: Alice tries to call Bob, but the call is redirected to Charlie.

This occurs when Bob redirects/rejects the call with any of the following:

• Unconditional call forwarding towards Charlie

• Closed schedule towards Charlie

• Call permission forbidding Alice to call Bob

• Preprocess subroutine forwarding the call towards Charlie

Call completion will activate and call back for the original called party Scenario: Alice tries to call Bob, but
the call is redirected to Charlie. When activating call completion, Alice hears that the call completion is activated
and eventually Alice is called back to speak with Bob.

This occurs when Bob redirects/rejects the call with any of the following:

• No-answer call forwarding towards Charlie

• Busy call forwarding towards Charlie

150 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Call completion will activate and call back for the rerouted called party Scenario: Alice tries to call Bob, but
the call is redirected to Charlie. When activating call completion, Alice hears that the call completion is activated
and eventually Alice is called back to speak with Charlie.

This occurs when Bob redirects the call with any of the following:

• Boss-Secretary filter to the secretary Charlie

Call completion will activate and call back for the original called party but fail to join him Scenario: Alice
tries to call Bob, but the call is redirected to Charlie. When activating call completion, Alice hears that the call
completion is activated and eventually Alice is called back to speak with Bob. But when Alice answers, Bob is
not called. If Alice activates call completion again, she will hear that the call completion was cancelled.

This occurs when Bob redirects/rejects the call with any of the following:

• Do Not Disturb mode

• a new call forwarding rule that was applied after Alice activated call completion:

– Unconditional call forwarding towards Charlie

– Closed schedule towards Charlie

– Call permission forbidding Alice to call Bob

– Preprocess subroutine forwarding the call towards Charlie

Limitations

• Call completion can only be used with SIP lines. It can’t be used with SCCP lines.

• It can’t be used with outgoing calls and incoming calls, except if these calls are passing through a customized
trunk of type Local.

• It can’t be used with groups or queues.

• The call completion feature can’t be enabled only for a few users; either all users have access to it, or none.

Configuration

The call completion extension is enabled via the Services → IPBX → IPBX services → Extensions page, in the
General tab.

Fig. 1.38: Call Completion Extension

If your XiVO has been installed in version 14.16 or earlier, then this extension is by default disabled. Otherwise,
this extension is by default enabled.

1.8.4 Call Permissions

You can manage call permissions via the Services → IPBX → Call management → Call permissions page.

Call permissions can be used for:

• denying a user from calling a specific extension

• denying a user of a group from calling a specific extension

• denying a specific extension on a specific outgoing call from being called

1.8. Administration 151

XiVO Documentation, Release 16.08

• denying an incoming call coming from a specific extension from calling you

More than one extension can match a given call permission, either by specifying more than one extension for that
permission or by using extension patterns.

You can also create permissions that allow a specific extension to be called instead of being denied. This make it
possible to create a general “deny all” permission and then an “allow for some” one.

Finally, instead of unconditionally denying calling a specific extension, call permissions can instead challenge the
user for a password to be able to call that extension.

As you can see, you can do a lot of things with XiVO’s call permissions. They can be used to create fairly complex
rules. That said, it is probably not a good idea to so because it’s pretty sure you’ll get it somehow wrong.

Examples

Note that when creating or editing a call permission, you must at least:

• fill the Name field

• have one extension / extension pattern in the Extensions field

Denying a user from calling a specific extension

• Add the extension in the extensions list

• In the Users tab, select the user

Note: User’s Rightcall Code (Services -> IPBX -> IPBX Settings -> Users under Services tab) overwrite all
password call permissions for the user.

Warning: The extension can be anything but it will only work if it’s the extension of a user or an extension
that pass through an outgoing call. It does not work, for example, if the extension is the number of a conference
room.

Denying a user of a group from calling a specific extension

First, you must create a group and add the user to this group. Note that groups aren’t required to have a number.

Then,

• Add the extension in the extensions list

• In the Groups tab, select the group

Denying users from calling a specific extension on a specific outgoing call

• Add the extension in the extensions list

• In the Outgoing calls tab, select the outgoing call

Note that selecting both a user and an outgoing call for the same call permission doesn’t mean the call permission
applies only to that user. In fact, it means that the user can’t call that extension and that the extension can’t be
called on the specific outgoing call. This in redundant and you will get the same result by not selecting the user.

152 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Denying an incoming call coming from a specific extension from calling you

Call permissions on incoming calls are semantically different from the other scenarios since the extension that you
add to the permission will match the extension of the caller (i.e. the caller number) and not the extension that the
caller dialed (i.e. the callee number).

• Add the extension in the extensions list.

• In the Incoming calls tab, select the incoming call

1.8.5 Call Logs

Call logs are pre-generated from CEL entries. The generation is done automatically by xivo-call-logd. xivo-call-
logs is also run nightly to generate call logs from CEL that were missed by xivo-call-logd.

Note: The oldest call logs are periodically removed. See Purge Logs for more details.

Search Dashboard

Call logs can be accessed using the menu Services → IPBX → Call management → Call Logs page.

Fig. 1.39: Calls Records Dashboard

Specifying no start date returns all available call logs. Specifying a start date and no end date returns all call logs
from start date until now.

Call logs are presented in a CSV format. Here’s an example:

Call Date,Caller,Called,Period,user Field
2015-01-02T00:00:00,Alice (1001),1002,2,userfield

The CSV format has the following specifications:

• field names are listed on the first line

• fields are separated by commas: ,

• if there is a comma in a field value, the value is surrounded by double quotes: "

• the UTF-8 character encoding is used

REST API

Call logs are also available from xivo-confd REST API.

Manual generation

Call logs can also be generated manually. To do so, log on to the target XiVO server and run:

xivo-call-logs

1.8. Administration 153

XiVO Documentation, Release 16.08

To avoid running for too long in one time, the call logs generation is limited to the N last unprocessed CEL entries
(default 20,000). This means that successive calls to xivo-call-logs will process N more CELs, making
about N/10 more calls available in call logs, going further back in history, while processing new calls as well.

You can specify the number of CEL entries to consider. For example, to generate calls using the 100,000 last
unprocessed CEL entries:

xivo-call-logs -c 100000

1.8.6 CLI Tools

XiVO comes with a collection of console (CLI) tools to help administer the server.

xivo-dist

xivo-dist is the xivo repository sources manager. It is used to switch between distributions (production, develop-
ment, release candidate, archived version). Example use cases :

• switch to production repository : xivo-dist xivo-five

• switch to development repository : xivo-dist xivo-dev

• switch to release candidate repository : xivo-dist xivo-rc

• switch to an archived version’s repository (here 14.18) : xivo-dist xivo-14.18

1.8.7 Conference Room

Adding a conference room

In this example, we’ll add a conference room with number 1010.

First, you need to define a conference room number range for the ‘’default” context via the ‘’Services / IPBX /
IPBX configuration / Contexts” page.

Fig. 1.40: Adding a conference room number range to the default context

You can then create a conference room via the ‘’Services / IPBX / IPBX settings / Conference rooms” page.

In this example, we have only filled the ‘’Name” and ‘’Number” fields, the others have been left to their default
value.

As you can see, there’s quite a few options when adding / editing a conference room. Here’s a description of the
most common one:

General / PIN code Protects your conference room with a PIN number. People trying to join the room will be
asked for the PIN code.

General / Don’t play announce for first participant Don’t play the “you are currently the only person in this
conference” for the first participant.

General / Max participants Limits the number of participants in the conference room. A value of 0 means
unlimited.

154 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.41: Creating conference room 1010

1.8.8 CTI Server

The CTI server configuration options can be found in the web-interface under the services tab.

General Options

The general options allow the administrator to manage network connections between the CTI server and the
clients.

The section named STARTTLS options allows the administrator to enable encrypted communications between
the clients and xivo-ctid and specify the certificate and private keys to use.

If no certificate and private key is configured, xivo-ctid will use the ones located in /usr/share/xivo-certs.

Parting options are used to isolate XiVO users from each other. These options should be used when using the
same XiVO for different enterprises.

Context separation is based on the user’s line context. A user with no line is not the member of any context and
will not be able to do anything with the CTI client.

Note: The CTI Server must be restarted to take into account this parameter.

Authentication

xivo-ctid uses xivo-auth to authenticate users. The default authentication backend is xivo_user. To change the
authentication backend, add a configuration file in /etc/xivo-ctid/conf.d with the following content:

auth:
backend: backend_name

where backend name is the name of an enabled xivo-auth Backends Plugins.

1.8. Administration 155

XiVO Documentation, Release 16.08

Presence Option

In the Status menu, under Presences, you can edit presences group. The default presence group is xivo. When
editing a group, you will see a list of presences and there descriptions.

Available configuration

• Presence name is the name of the presence

• Display name is the human readable representation of this presence

• Color status is the color associated to this presence

• Other reachable statuses is the list of presence that can be switched from this presence state

• Actions are post selection actions that are triggered by selecting this presence

Actions

action param
Enable DND {‘true’,’false’}
Pause agent in all queues
Unpause agent in all queues
Agent logoff

Enable encryption

To enable encryption of CTI communications between server and clients, you have to enable STARTTLS in CTI
Server → General settings → General

156 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Custom certificates can be added in Configuration → Certificates and used in CTI Server → General settings →
General

In your XiVO Client, in the menu XiVO Client → Configure → Connection, click on the lock icon.

Note: A client which chooses to use encryption will not be able to connect to a server that does not have
STARTTLS enabled.

Warning: For now, there is no mechanism for strong authentication of the server. The connection is en-
crypted, but the identity of the server is not verified.

CTI profiles

The CTI profiles define which features are made available to a user. You can configure which profile will be used
by a user in the menu IPBX → PBX Settings → Users:

You can also customize the default profiles or add new profiles in the menu CTI Server → Profiles:

Xlets

To choose which features are available to users using a profile, you have to select which Xlets will be available.

1.8. Administration 157

XiVO Documentation, Release 16.08

The Xlets are detailed in Xlets.

The Position attribute determines how the Xlets will be laid out:

• dock will display a Xlet in its own frame. This frame can have some options:

– Floating means that the frame can be detached from the main window of the CTI Client.

– Closable means that the Xlet can be hidden

– Movable means that the Xlet can be moved (either inside the main window or outside)

– Scroll means that the Xlet will display a scroll bar if the Xlet is too large.

• grid will display a Xlet inside the main window, and it will not be movable. Multiple grid Xlets will be laid
out vertically (the second below the first).

• tab will display a Xlet inside a tab of the Xlet Tabber. Thus the Xlet Tabber is required and can’t be in a tab
position.

The Number attribute gives the order of the Xlets, beginning with 0. The order applies only to Xlets having the
same Position attribute.

1.8.9 Display customer informations

Sheet Configuration

Sheets can be defined under Services → CTI Server → Models in the web interface. Once a sheet is defined, it has
to be assigned to an event in the Services → CTI Server → Events menu.

Model The model contains the content of the displayed sheet.

Event Events are actions that trigger the defined sheet. A sheet can be assigned to many events. In that case, the
sheet will be raised for each event.

General settings

You must give a name to your sheet to be able to select it later.

The Focus checkbox makes the XiVO Client pop up when the sheet is displayed, if the XiVO Client was hidden.

158 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Sheets

There are two different ways to configure the contents of the sheet:

• creating a custom sheet from the Qt designer. This gives you a total control on the layout of the information
and allows you to save and process data entered during or after a call.

• listing the different fields and their content. The information will be automatically laid out in a linear fashion
and will be read-only.

Custom sheet

Configuring the sheet The Qt interface field is the path to the UI file created by the Qt Designer. The
path can either be a local file on your XiVO starting with file://, or a HTTP URL.

You must add a field with type form and display value qtui for the form to be displayed.

Create a custom sheet with Qt Designer The Qt Designer is part of the Qt development kit and is also available
in the Qt Creator. They are available on the Qt project website.

Here is an example of a small form created with Qt Designer.

The Qt Designer screenshot.

Warning: In Qt Designer, one must set ‘vertical layout’ on the top widget (right click on the top widget >
Lay out > Vertical layout).

You can download the file generated by this example from Qt Designer: example-form.ui

Text fields (QLineEdit, QLabel, QPlainTextEdit) can contain variables that will be substituted. See the variable
list for more information.

1.8. Administration 159

http://qt-project.org/downloads

XiVO Documentation, Release 16.08

160 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

List of fields Default XiVO sheet example :

Example showing all kinds of fields:

Each field is represented by the following parameters :

• Field title : name of your line used as label on the sheet.

• Field type : define the type of field displayed on the sheet. Supported field types :

– title : to create a title on your sheet

– text : show a text

– url : a simple url link, open your default browser.

– urlx : an url button

– phone : create a tel: link, you can click to call on your sheet.

– form : show the form from an ui predefined. It’s an xml ui. You need to define qtui in display format.

• Default value : if given, this value will be used when all substitutions in the display value field fail.

• Display value : you can define text, variables or both. See the variable list for more information.

Variables Three kinds of variables are available :

• xivo- prefix is reserved and set inside the CTI server:

– xivo-where for sheet events, event triggering the sheet

– xivo-origin place from where the lookup is requested (did, internal, forcelookup)

– xivo-direction incoming or internal

– xivo-did DID number

– xivo-calleridnum

– xivo-calleridname

– xivo-calleridrdnis contains information whether there was a transfer

– xivo-calleridton Type Of Network (national, international)

– xivo-calledidnum

– xivo-calledidname

– xivo-ipbxid (xivo-astid in 1.1)

1.8. Administration 161

XiVO Documentation, Release 16.08

– xivo-directory : for directory requests, it is the directory database the item has been found

– xivo-queuename queue called

– xivo-agentnumber agent number called

– xivo-date formatted date string

– xivo-time formatted time string, when the sheet was triggered

– xivo-channel asterisk channel value (for advanced users)

– xivo-uniqueid asterisk uniqueid value (for advanced users)

• db- prefixed variables are defined when the reverse lookup returns a result.

For example if you want to access to the reverse lookup full name, you need to define a field
fullname in the directory definition, mapping to the full name field in your directory. The
{db-fullname} will be replaced by the caller full name. Every field of the directory is acces-
sible this way.

• dp- prefixed ones are the variables set through the dialplan (through UserEvent application)

For example if you want to access from the dialplan to a variable dp-test you need to add in your
dialplan this line (in a subroutine):

UserEvent(dialplan2cti,UNIQUEID: ${UNIQUEID},CHANNEL: ${CHANNEL},VARIABLE: test,VALUE: "Salut")

The {dp-test} displays Salut.

Sending informations during/after a call After showing a sheet, the XiVO Client can also send back informa-
tion to XiVO for post-processing or archiving.

Here are the requirements:

• The sheet must contain a button named save to submit information

• Supported widgets:

– QCalendarWidget

– QCheckBox

– QComboBox

– QDateEdit

– QDateTime

– QDateTimeEdit

– QDoubleSpinBox

– QLabel

– QLineEdit

– QList

– QPlainTextEdit

– QRadioButton

– QSpinBox

– QTimeEdit

• Fields must have their name starting with XIVOFORM_

If you want to send information that is not visible, you can make the widget invisible on the sheet:

• change the maximumWidth or maximumHeight property to 0

162 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• edit the .ui file and add the following property to the widget:

<property name="visible">
<bool>false</bool>

</property>

When a CTI client submits a custom sheet, a call_form_result event is published on the event bus.

Systray

Mostly the same syntax as the sheet with less field types available (title, body). A Systray popup will display a
single title (the last one added to the list of fields) and zero, one or more fields of type ‘body’.

Warning: The popup message on MacOSX works with Growl http://growl.info. We could get simple sheet
popup to work using the free Growl Fork http://www.macupdate.com/app/mac/41038/growl-fork Note that this
is not officially supported.

Actions

The action is for the xivo client, so if you configure an action, please be sure you understand it’s executed by
the client. You need to allow this action in the client configuration too (menu XiVO Client -> Configure, tab
Functions, tick option Customer Info and in sub-tab Customer Info tick the option Allow the Automatic Opening
of URL).

The field in this tab receives the URL that will be displayed in your browser. You can also use variable substitution
in this field.

• http://example.org/foo opens the URL on the default browser

• http://example.org/{xivo-did} opens the URL on the default browser, after
substituting the {xivo-did} variable. If the substitution fails, the URL will remain
http://example.org/{xivo-did}, i.e. the curly brackets will still be present.

• http://example.org/{xivo-did}?origin={xivo-origin} opens the URL on the de-
fault browser, after substituting the variables. If at least one of the substitution is successful,
the failing substitutions will be replaced by an empty string. For example, if {xivo-origin}
is replaced by ‘outcall’ but {xivo-did} is not substituted, the resulting URL will be
http://example.org/?origin=outcall

• tcp://x.y.z.co.fr:4545/?var1=a1&var2=a2 connects to TCP port 4545 on x.y.z.co.fr, sends
the string var1=a1&var2=a2, then closes

• udp://x.y.z.co.fr:4545/?var1=a1&var2=a2 connects to UDP port 4545 on x.y.z.co.fr, sends
the string var1=a1&var2=a2, then closes

Note: any string that would not be understood as an URL will be handled like and URL it is a process to launch
and will be executed as it is written

1.8. Administration 163

http://growl.info
http://www.macupdate.com/app/mac/41038/growl-fork

XiVO Documentation, Release 16.08

For tcp:// and udp://, it is a requirement that the string between / and ? is empty. An extension could be to define
other serialization methods, if needed.

Event configuration

You can configure a sheet when a specific event is called. For example if you want to receive a sheet when an
agent answers to a call, you can choose a sheet model for the Link event.

The following events are available :

• Dial: When the member’s phone starts ringing for calls on a group or queue or when the user receives a call

• Link: When a user or agent answers a call

• Unlink: When a user or agent hangup a call received from a queue

• Incoming DID: Received a call in a DID

• Hangup: Hangup the call

The informations about a call are displayed via the XiVO Client on forms called sheets.

Example: Display a Web page when an agent answers a call

The first step is to assign the URL to a dialplan variable. Go in the Services → IPBX → Configuration files and
create a new file called setsheeturl.conf. In this file, put the following:

[setsheeturl]
exten = s,1,NoOp(Starting Set Sheet URL)
same = n,Set(SHEET_URL_CTI=http://documentation.xivo.io)
same = n,UserEvent(dialplan2cti,UNIQUEID: ${UNIQUEID},CHANNEL: ${CHANNEL},VARIABLE: mysheeturl,VALUE: ${SHEET_URL_CTI})
same = n,Return()

You can replace documentation.xivo.io by the URL you want.

The second step is to set the URL when the call is queued. To do that, we will use a preprocessing subroutine.
This is configured in the queue configuration : go to Services → Call center → Queues and edit the queue. Set
the field Preprocessing subroutine to setsheeturl (the same as above).

The third step is to configure the sheet to open the wanted URL. Go to Services → CTI Server → Sheets →
Models and create a new sheet. Keep the default for everything except the Action tab, add a field and set it to
{dp-mysheeturl} (the same as above).

164 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

The fourth and final step is to trigger the sheet when the agent answers the queued call. Go to Services → CTI
Server → Sheets → Events and link the event Agent linked to the sheet you just created.

That’s it, you can assign agents to your queue, log the agents and make them answer calls with the XiVO Client
opened, and your browser should open the specified URL.

1.8.10 Devices

Synchronize a device

First you have to display the list of devices.

Fig. 1.42: Click on the synchronize button for a device.

Fig. 1.43: List devices

You will see a pop-up to confirm synchronization Click on the <ok> button.

Fig. 1.44: Alert confirm synchronize

You must wait until the full synchronization process has completed to determine the state returned back from the
device. This can take several seconds. It is important to wait and do nothing during this time.

If synchronization is successful, a green information balloon notifies you of success.

If synchronization fails, a red information balloon warns you of failure.

Synchronize multiple devices

Warning: When using multiple synchronization, the individual return states will not be displayed.

1.8. Administration 165

XiVO Documentation, Release 16.08

Fig. 1.45: Request synchronization processing

Fig. 1.46: Device successfully synchronized

Fig. 1.47: Error during device synchronization

Fig. 1.48: Synchronize selected devices

166 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Select the devices you want to synchronize by checking the boxes.

A pop-up will appear requesting confirmation.

Fig. 1.49: Synchronize selected devices confirmation

If mass synchronization was successfully sent to the devices, a green information balloon notifies you of success.

Fig. 1.50: Mass synchronization request sent successfully

1.8.11 Directories

This page documents how to add and configure directories from custom sources. Directories added from custom
sources can be used for lookup via the XiVO Client, directory feature of phones or for reverse lookup on incoming
calls.

An example of adding a source and configuring source access is made for each type of source:

XiVO directories

This type of directory is used to query the users of a XiVO. On a fresh install, the local XiVO is already configured.
The URI field for this type of directory should be the base URL of a xivo-confd server.

This directory type matches the xivo backend in xivo-dird.

Available fields

• id

• agent_id

• line_id

• firstname

• lastname

• email

• exten

• context

• mobile_phone_number

• userfield

1.8. Administration 167

XiVO Documentation, Release 16.08

• description

• voicemail_number

Example

Fig. 1.51: Configuration → Management → Directories

Adding a source

Configuring source access Here is an example of a configuration where the userfield was used as a free field to
store the DID number of the user and the description to store it’s location.

CSV File directories

The source file of the directory must be in CSV format. You will be able to choose the headers and the separator
in the next steps. For example, the file will look like:

title|firstname|lastname|displayname|society|mobilenumber|email
mr|Emmett|Brown|Brown Emmett|DMC|5555551234|emmet.brown@dmc.example.com

This directory type matches the csv backend in xivo-dird.

For file directories, the Direct match and the Match reverse directories must be filled with the name of the column
used to match entries.

Available fields

Available fields are the one’s contained in the CSV file.

Example

csv-phonebook.csv:

168 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.52: Services → CTI Server → Directories → Definitions

1.8. Administration 169

XiVO Documentation, Release 16.08

title|firstname|lastname|displayname|society|phone|email
mr|Emmett|Brown|Brown Emmett|DMC|5555551234|emmet.brown@dmc.example.com
ms|Alice|Wonderland|Wonderland Alice|DMC|5555551235|alice.wonderland@dmc.example.com

Fig. 1.53: Configuration → Management → Directories

Adding a source

Fig. 1.54: Services → CTI Server → Directories → Definitions

Configuring source access

170 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

CSV Web service directories

The data returned by the Web service must have the same format than the file directory. In the same way, you will
be able to choose the headers and the separator in the next step.

This directory type matches the CSV web service backend in xivo-dird.

For web service directories, the Direct match and the Match reverse directories must be filled with the name of
the HTTP query parameter that will be used when doing the HTTP requests.

Note that the CSV returned by the Web service is not further processed.

Manual configuration needs to be done to use a secure (SSL) connection. See CSV web service for more details.

Available fields

Available fields are the ones contained in the CSV result.

Example

http://example.org:8000/ws-phonebook return csv:

title|firstname|lastname|displayname|society|phone|email
mr|Emmett|Brown|Brown Emmett|DMC|5555551234|emmet.brown@dmc.example.com
ms|Alice|Wonderland|Wonderland Alice|DMC|5555551235|alice.wonderland@dmc.example.com

Fig. 1.55: Configuration → Management → Directories

Adding a source

Configuring source access Given you have the following directory definition:

• Direct match : search

• Match reverse directories : phone

When a direct lookup for “Alice” is performed, then the following HTTP request:

GET /ws-phonebook?search=Alice HTTP/1.1

is emitted. When a reverse lookup for “5555551234” is performed, then the following HTTP request:

GET /ws-phonebook?phone=5555551234 HTTP/1.1

is emitted. On the reverse lookup, a filtering is performed on the result. In this example, it should have phone as
column.

1.8. Administration 171

http://example.org:8000/ws-phonebook

XiVO Documentation, Release 16.08

Fig. 1.56: Services → CTI Server → Directories → Definitions

Phonebook directories

This type of directory source is the internal phonebook of a XiVO. The URI field is the one used to query the
phonebook.

This directory type matches the phonebook backend in xivo-dird.

Available fields

General phone book section These fields are set in the General tab of the phone book.

• phonebook.description

• phonebook.displayname

• phonebook.email

• phonebook.firstname

• phonebook.fullname (this value is automatically generated as “<firstname> <lastname>”, e.g. “John
Doe”)

• phonebook.lastname

• phonebook.society

• phonebook.title

• phonebook.url

Phone numbers These are the different phone numbers that are available

• phonebooknumber.fax.number

172 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• phonebooknumber.home.number

• phonebooknumber.mobile.number

• phonebooknumber.office.number

• phonebooknumber.other.number

Addresses Each configured address can be accessed

Address uses the following syntax phonebookaddress.[location].[field], e.g. phonebookaddress.office.zipcode.

Locations

• home

• office

• other

Fields

• address1

• address2

• city

• country

• state

• zipcode

Example

Fig. 1.57: Configuration → Management → Directories
URI : http://localhost/service/ipbx/json.php/private/pbx_services/phonebook

Adding a source

Configuring source access Default phonebook is set in Directories -> Definitions -> xivodir.

Note: Phone IP should be in the authorized subnet to access the directories. See Remote directory.

1.8. Administration 173

XiVO Documentation, Release 16.08

Fig. 1.58: Services → CTI Server → Directories → Definitions

174 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Adding a source

Note: See LDAP for adding this source.

You can add new data sources via the Configuration → Management → Directories page.

• Directory name: the name of the directory

• Type: there are 4 types of directory:

– XiVO

– CSV File

– CSV Web service

– Phonebook

• URI: the data source

• Description: (optional) a description of the directory

Configuring source access

Go in Services → CTI Server → Directories → Definitions and add a new directory definition.

• Name: the name of the directory definition

• URI: the data source

• Delimiter: (optional) the field delimiter in the data source

• Direct match: the list used to match entries for direct lookup (comma separated)

• Match reverse directories: (optional) the list used to match entries for reverse lookup (comma separated)

• Mapped fields: used to add or modify columns in this directory source

– Fieldname: the identifier for this new field

– Value: a python format string that can be used to modify the data returned from a data source

Reverse lookup

It’s possible to do reverse lookups on incoming calls to show a better caller ID name when the caller is in one of
our directories.

Reverse lookup will only be tried if at least one of the following conditions is true:

• The caller ID name is the same as the caller ID number

• The caller ID name is “unknown”

Also, reverse lookup is performed after caller ID number normalization (since XiVO 13.11).

To enable reverse lookup, you need to add an entry in Mapped fields:

• Fieldname: reverse

• Value: the header of your data source that you want to see as the caller ID on your phone on incoming calls

1.8. Administration 175

XiVO Documentation, Release 16.08

Example

• Match reverse directories: phonebooknumber.office.number,phonebooknumber.mobile.number,phonebooknumber.home.number

• Fieldname: reverse

• Value: phonebook.society

This configuration will show the contact’s company name on the caller ID name, when the incoming call will
match office, mobile or home number.

Fig. 1.59: Services → CTI Server → Directories → Definitions

Phone directory

Phone directory takes 2 Fieldname by default:

• display_name: the displayed name on the phone

• phone: the number to call

Examples:

You will find below some useful configurations of Mapped fields.

Adding a name field from firstname and lastname Given a configuration where the directory source returns
results with fields firstname and lastname . To add a name column to a directory, the administrator would add the
following Mapped fields:

• Fieldname: name

• Value: {firstname} {lastname}

176 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Prefixing a field Given a directory source that need a prefix to be called, a new field can be created from an
exising one. To add a prefix 9 to the numbers returned from a source, the administrator would add the following
Mapped fields:

• Fieldname: number

• Value: 9{number}

Adding a static field Sometimes, it can be useful to add a field to the search results. A string can be added
without any formatting. To add a directory field to the xivodir directory, the administrator would add the following
Mapped fields:

• Fieldname: directory

• Value: XiVO internal directory

Configuring source display

XiVO Client

Edit the default display filter or create your own in Services → CTI Server → Directories → Display filters.

Fig. 1.60: Services → CTI Server → Directories → Display filters

Each line in the display filter will result in a header in your XiVO Client.

• Field title: text displayed in the header.

• Field type: type of the column, this information is used by the XiVO Client. (see type description)

• Default value: value that will be used if this field is empty for one of the configured sources.

• Field name: name of the field in the directory definitions. The specified names should be available in the
configured sources. To add new column name to a directory definition see above.

1.8. Administration 177

XiVO Documentation, Release 16.08

Phone

The only way to configure display phone directory is through XiVO dird configuration.

Adding a directory

To include a directory in direct directory definition:

1. Go to Services → CTI Server → Directories → Direct directories.

2. Edit your context.

3. Select your display filter.

4. Add the directories in the Directories section.

To include a directory in reverse directory definition:

1. Go to Services → CTI Server → Directories → Reverse directories.

2. Add the directories to include to reverse lookups in the Related directories section.

Applying changes

Reload the directory configuration for XiVO Client, phone lookups and reverse lookups, use ONE of these meth-
ods:

• Services → CTI Server → Control → Restart Dird server

• console service xivo-dird restart

1.8.12 Directed Pickup

Directed pickup allows a user to intercept calls made to another user.

For example, if a user with number 1001 is ringing, you can dial *81001 from your phone and it will intercept
(i.e. pickup) the call to this user.

The extension prefix used to pickup calls can be changed via the Services → IPBX → IPBX services → Extensions
page.

Custom Line Limitation

There is a case where directed pickup does not work, which is the following:

Given you have a user U with a line of type "customized"
Given this custom line is using DAHDI technology
Given this user is a member of group G
When a call is made to group G
Then you won't be able to intercept the call made to U by pressing *8<line number of U>

If you find yourself in this situation, you’ll need to write a bit of dialplan.

For example, if you have the following:

• a user with a custom line with number 1001 in context default

• a custom line with interface DAHDI/g1/5551234

Then add the following, or similar:

178 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

[custom_lines]
exten = line1001,1,NoOp()
same = n,Set(__PICKUPMARK=1001%default)
same = n,Dial(DAHDI/g1/5551234)
same = n,Hangup()

And do a dialplan reload in the asterisk CLI.

Then, edit the line of the user and change the interface value to Local/line1001@custom_lines

Note that you’ll need to update your dialplan if you update the number of the line or the context.

1.8.13 Entities

Purpose

In some cases, as the telephony provider, you want different independent organisations to have their telephony
served by your XiVO, e.g. different departments using the same telephony infrastructure, but you do not want
each organisation to see or edit the configuration of other organisations.

Configuration

In Configuration → Entities, you can create entities, one for each independant organisation.

In Configuration → Users, you can select an entity for each administrator.

Note: Once an entity is linked with an administrator, it can not be deleted. You have to unlink the entity from all
administrator to be able to delete it.

For the new entity to be useful, you need to create contexts in this entity. You may need:

• an Internal context for users, groups, queues, etc.

• an Incall context for incoming calls

• an Outcall context for outgoing calls, which should be included in the Internal context for the users to be
able to call external numbers

Limitations

Global Fields

Some fields are globally unique and will collide when the same value is used in different entities:

• User CTI login

• Agent number

• Queue name

• Context name

An error message will appear when creating resources with colliding parameters, saying the resource already
exists, even if the entity-linked administrator can not see them.

1.8. Administration 179

XiVO Documentation, Release 16.08

Affected Lists

Only the following lists may be filtered by entity:

• Lines

• Users

• Devices

• Groups

• Voicemails

• Conference Rooms

• Incoming calls

• Call filters

• Call pickups

• Schedules

• Agents

• Queues

For the devices:

• The filtering only applies to the devices associated with a line.

• The devices in autoprov mode or not configured mode are visible by every administrator.

REST API

The REST API does not have the notion of entity. When creating a resource without context via REST API, the
resource will be associated to an arbitrary entity. Affected resources are:

• Contexts

• Call filters

• Group pickups

• Schedules

• Users

1.8.14 Fax

Fax transmission

It’s possible to send faxes from XiVO using the fax Xlet in the XiVO client.

The file to send must be in PDF format.

Fax reception

Adding a fax reception DID

If you want to receive faxes from XiVO, you need to add incoming calls definition with the Application destination
and the FaxToMail application for every DID you want to receive faxes from.

This applies even if you want the action to be different from sending an email, like putting it on a FTP server.
You’ll still need to enter an email address in these cases even though it won’t be used.

180 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.61: The fax Xlet in the XiVO Client

1.8. Administration 181

XiVO Documentation, Release 16.08

Note that, as usual when adding incoming call definitions, you must first define the incoming call range in the
used context.

Changing the email body

You can change the body of the email sent upon fax reception by editing /etc/xivo/mail.txt.

The following variable can be included in the mail body:

• %(dstnum)s: the DID that received the fax

If you want to include a regular percent character, i.e. %, you must write it as %% in mail.txt or an error will
occur when trying to do the variables substitution.

The agid service must be restarted to apply changes:

service xivo-agid restart

Changing the email subject

You can change the subject of the email sent upon fax reception by editing
/etc/xivo/asterisk/xivo_fax.conf.

Look for the [mail] section, and in this section, modify the value of the subject option.

The available variable substitution are the same as for the email body.

The agid service must be restarted to apply changes:

service xivo-agid restart

Changing the email from

You can change the from of the email sent upon fax reception by editing
/etc/xivo/asterisk/xivo_fax.conf.

Look for the [mail] section, and in this section, modify the value of the email_from option.

The agid service must be restarted to apply changes:

service xivo-agid restart

182 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Changing the email realname

You can change the realname of the email sent upon fax reception by editing
/etc/xivo/asterisk/xivo_fax.conf.

Look for the [mail] section, and in this section, modify the value of the email_realname option.

The agid service must be restarted to apply changes:

service xivo-agid restart

Using the advanced features

The following features are only available via the /etc/xivo/asterisk/xivo_fax.conf configuration
file. They are not available from the web-interface.

The configuration file has documentation embedded in it in the form of comments, so we recommend you reading
them before editing the configuration file.

The way it works is the following:

• you first declare some backends, i.e. actions to be taken when a fax is received. A backend name looks like
mail, ftp_example_org or printer_office.

• once your backends are defined, you can use them in your destination numbers. For example, when someone
calls the DID 100, you might want the ftp_example_org and mail backend to be run, but otherwise,
you only want the mail backend to be run.

Here’s an example of a valid /etc/xivo/asterisk/xivo_fax.conf configuration file:

[general]
tiff2pdf = /usr/bin/tiff2pdf
mutt = /usr/bin/mutt
lp = /usr/bin/lp

[mail]
subject = FAX reception to %(dstnum)s
content_file = /etc/xivo/mail.txt
email_from = no-reply+fax@xivo.io
email_realname = Service Fax

[ftp_example_org]
host = example.org
username = foo
password = bar
directory = /foobar

[dstnum_default]
dest = mail

[dstnum_100]
dest = mail, ftp_example_org

The section named dstnum_default will be used only if no DID-specific actions are defined.

After editing /etc/xivo/asterisk/xivo_fax.conf, you need to restart the agid server for the changes
to be applied:

service xivo-agid restart

Using the FTP backend The FTP backend is used to send a PDF version of the received fax to an FTP server.

1.8. Administration 183

XiVO Documentation, Release 16.08

An FTP backend is always defined in a section beginning with the ftp prefix. Here’s an example for a backend
named ftp_example_org:

[ftp_example_org]
host = example.org
port = 2121
username = foo
password = bar
directory = /foobar
convert_to_pdf = 0

The port option is optional and defaults to 21.

The directory option is optional and if not specified, the document will be put in the user’s root directory.

The convert_to_pdf option is optional and defaults to 1. If it is set to 0, the TIFF file will not be converted
to PDF before being sent to the FTP server.

The uploaded file are named like ${XIVO_SRCNUM}-${EPOCH}.pdf.

Using the printer backend To use the printer backend, you must have the cups-client package installed
on your XiVO:

$ apt-get install cups-client

The printer backend uses the lp command to print faxes.

A printer backend is always defined in a section beginning with the printer prefix. Here’s an example for a
backend named printer_office:

[printer_office]
name = office
convert_to_pdf = 1

When a fax will be received, the system command lp -d office <faxfile> will be executed.

The convert_to_pdf option is optional and defaults to 1. If it is set to 0, the TIFF file will not be converted
to PDF before being printed.

Warning: You need a CUPS server set up somewhere on your network.

Using the mail backend By default, a mail backend named mail is defined. You can define more mail backends
if you want. Just look what the default mail backend looks like.

Using the log backend There’s also a log backend available, which can be used to write a line to a file every
time a fax is received.

Fax detection

XiVO does not currently support Fax Detection. A workaround is described in the Fax detection section.

Using analog gateways

XiVO is able to provision Cisco SPA122 and Linksys SPA2102, SPA3102 and SPA8000 analog gateways which
can be used to connect fax equipments. This section describes the creation of custom template for SPA3102 which
modifies several parameters.

184 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Note: With SPA ATA plugins >= v0.8, you should not need to follow this section anymore since all of these
parameters are now set in the base templates of all, except for Echo_Canc_Adapt_Enable, Echo_Supp_Enable,
Echo_Canc_Enable.

Note: Be aware that most of the parameters are or could be country specific, i.e. :

• Preferred Codec,

• FAX Passthru Codec,

• RTP Packet Size,

• RTP-Start-Loopback Codec,

• Ring Waveform,

• Ring Frequency,

• Ring Voltage,

• FXS Port Impedance

1. Create a custom template for the SPA3102 base template:

cd /var/lib/xivo-provd/plugins/xivo-cisco-spa3102-5.1.10/var/templates/
cp ../../templates/base.tpl .

2. Add the following content before the </flat-profile> tag:

<!-- CUSTOM TPL - for faxes - START -->

{% for line_no, line in sip_lines.iteritems() %}
<!-- Dial Plan: L{{ line_no }} -->
<Dial_Plan_{{ line_no }}_ ua="na">([x*#].)</Dial_Plan_{{ line_no }}_>

<Call_Waiting_Serv_{{ line_no }}_ ua="na">No</Call_Waiting_Serv_{{ line_no }}_>
<Three_Way_Call_Serv_{{ line_no }}_ ua="na">No</Three_Way_Call_Serv_{{ line_no }}_>

<Preferred_Codec_{{ line_no }}_ ua="na">G711a</Preferred_Codec_{{ line_no }}_>
<Silence_Supp_Enable_{{ line_no }}_ ua="na">No</Silence_Supp_Enable_{{ line_no }}_>
<Echo_Canc_Adapt_Enable_{{ line_no }}_ ua="na">No</Echo_Canc_Adapt_Enable_{{ line_no }}_>
<Echo_Supp_Enable_{{ line_no }}_ ua="na">No</Echo_Supp_Enable_{{ line_no }}_>
<Echo_Canc_Enable_{{ line_no }}_ ua="na">No</Echo_Canc_Enable_{{ line_no }}_>
<Use_Pref_Codec_Only_{{ line_no }}_ ua="na">yes</Use_Pref_Codec_Only_{{ line_no }}_>
<DTMF_Tx_Mode_{{ line_no }}_ ua="na">Normal</DTMF_Tx_Mode_{{ line_no }}_>

<FAX_Enable_T38_{{ line_no }}_ ua="na">Yes</FAX_Enable_T38_{{ line_no }}_>
<FAX_T38_Redundancy_{{ line_no }}_ ua="na">1</FAX_T38_Redundancy_{{ line_no }}_>
<FAX_Passthru_Method_{{ line_no }}_ ua="na">ReINVITE</FAX_Passthru_Method_{{ line_no }}_>
<FAX_Passthru_Codec_{{ line_no }}_ ua="na">G711a</FAX_Passthru_Codec_{{ line_no }}_>
<FAX_Disable_ECAN_{{ line_no }}_ ua="na">yes</FAX_Disable_ECAN_{{ line_no }}_>
<FAX_Tone_Detect_Mode_{{ line_no }}_ ua="na">caller or callee</FAX_Tone_Detect_Mode_{{ line_no }}_>

<Network_Jitter_Level_{{ line_no }}_ ua="na">very high</Network_Jitter_Level_{{ line_no }}_>
<Jitter_Buffer_Adjustment_{{ line_no }}_ ua="na">disable</Jitter_Buffer_Adjustment_{{ line_no }}_>
{% endfor %}

<!-- SIP Parameters -->
<RTP_Packet_Size ua="na">0.020</RTP_Packet_Size>
<RTP-Start-Loopback_Codec ua="na">G711a</RTP-Start-Loopback_Codec>

<!-- Regional parameters -->
<Ring_Waveform ua="rw">Sinusoid</Ring_Waveform> <!-- options: Sinusoid/Trapezoid -->

1.8. Administration 185

XiVO Documentation, Release 16.08

<Ring_Frequency ua="rw">50</Ring_Frequency>
<Ring_Voltage ua="rw">85</Ring_Voltage>

<FXS_Port_Impedance ua="na">600+2.16uF</FXS_Port_Impedance>
<Caller_ID_Method ua="na">Bellcore(N.Amer,China)</Caller_ID_Method>
<Caller_ID_FSK_Standard ua="na">bell 202</Caller_ID_FSK_Standard>

<!-- CUSTOM TPL - for faxes - END -->

3. Reconfigure the devices with:

xivo-provd-cli -c 'devices.using_plugin("xivo-cisco-spa3102-5.1.10").reconfigure()'

4. Then reboot the devices:

xivo-provd-cli -c 'devices.using_plugin("xivo-cisco-spa3102-5.1.10").synchronize()'

Most of this template can be copy/pasted for a SPA2102 or SPA8000.

Using a SIP Trunk

Fax transmission, to be successful, MUST use G.711 codec. Fax streams cannot be encoded with lossy compres-
sion codecs (like G.729a).

That said, you may want to establish a SIP trunk using G.729a for all other communications to save bandwith.
Here’s a way to be able to receive a fax in this configuration.

Note: There are some prerequisites:

• your SIP Trunk must offer both G.729a and G.711 codecs

• your fax users must have a customized outgoing calleridnum (for the codec change is based on this variable)

1. We assume that outgoing call rules and fax users with their DID are created

2. Create the file /etc/asterisk/extensions_extra.d/fax.conf with the following content:

;; For faxes :
; The following subroutine forces inbound and outbound codec to alaw.
; For outbound codec selection we must set the variable with inheritance.
; Must be set on each Fax DID
[pre-incall-fax]
exten = s,1,NoOp(### Force alaw codec on both inbound (operator side) and outbound (analog gw side) when calling a Fax ###)
exten = s,n,Set(SIP_CODEC_INBOUND=alaw)
exten = s,n,Set(__SIP_CODEC_OUTBOUND=alaw)
exten = s,n,Return()

; The following subroutine forces outbound codec to alaw based on outgoing callerid number
; For outbound codec selection we must set the variable with inheritance.
; Must be set on each outgoing call rule
[pre-outcall-fax]
exten = s,1,NoOp(### Force alaw codec if caller is a Fax ###)
exten = s,n,GotoIf($["${CALLERID(num)}" = "0112697845"]?alaw:)
exten = s,n,GotoIf($["${CALLERID(num)}" = "0112697846"]?alaw:end)
exten = s,n(alaw),Set(__SIP_CODEC_OUTBOUND=alaw)
exten = s,n(end),Return()

3. For each Fax users’ DID add the following string in the Preprocess subroutine field:

pre-incall-fax

4. For each Outgoing call rule add the the following string in the Preprocess subroutine field:

186 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

pre-outcall-fax

1.8.15 Graphics

The Services/Graphics section gives a historical overview of a XiVO system’s activity based on snapshots recorded
every 5 minutes. Graphics are available for the following resources :

• CPU

• Entropy

• Interruptions

• IRQ Stats

• System Load

• Memory Usage

• Open Files

• Open Inodes

• Swap Usage

Each section is presented as a series of 4 graphics : daily, weekly, monthly and yearly history. Each graphic can
be clicked on to zoom. All information presented is read only.

1.8.16 Groups

Groups are used to be able to call a set or users.

Group name cannot be general reserved in asterisk configuration.

1.8.17 Group Pickup

Pickup groups allow users to intercept calls directed towards other users of the group. This is done either by
dialing a special extension or by pressing a function key.

Quick Summary

In order to be able to use group pickup you have to:

• Create a pickup group

• Enable an extension to intercept calls

• Add a function key to interceptors

Creating a Pickup Group

Pickup groups can be created in the Services → IPBX → Call management → Call pickups page.

In the general tab, you can define a name and a description for the pickup group. In the Interceptors tab, you can
define a list of users, groups or queues that can intercept calls. In the Intercepted tab, you can define a list of users,
groups or queues that can be intercepted.

1.8. Administration 187

XiVO Documentation, Release 16.08

188 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Enabling an Interception Extension

The pickup extension can be defined in the Services → IPBX → IPBX services → Extensions page.

The extension used by group pickup is called Group interception it’s default value is *8.

Warning: The extension must be enabled even if a function key is used.

Adding a Function Key to an Interceptor

To assign a function to an interceptor, go to Services → IPBX → IPBX settings → Users, edit an interceptor and
go to the Func Keys tab.

Add a new function key of type Group Interception and save.

1.8.18 Server/Hardware

This section describes how to configure the telephony hardware on a XiVO server.

1.8. Administration 189

XiVO Documentation, Release 16.08

Note: Currently XiVO supports only Digium Telephony Interface cards

The configuration process is the following :

Load the correct DAHDI modules

For your Digium card to work properly you must load the appropriate DAHDI kernel module. This is done via
the file /etc/dahdi/modules and this page will guide you through its configuration.

Know which card is in your server

You can see which cards are detected by issuing the dahdi_hardware command:

dahdi_hardware
pci:0000:05:0d.0 wcb4xxp- d161:b410 Digium Wildcard B410P
pci:0000:05:0e.0 wct4xxp- d161:0205 Wildcard TE205P (4th Gen)

This command gives the card name detected and, more importantly, the DAHDI kernel module needed for this
card. In the above example you can see that two cards are detected in the system:

• a Digium B410P which needs the wcb4xxp module

• and a Digium TE205P which needs the wct4xxp module

Create the configuration file

Now that we know the modules we need, we can create our configuration file:

1. Create the file /etc/dahdi/modules:

touch /etc/dahdi/modules

2. Fill it with the modules name you found with the dahdi_hardware command (one module name per
line). In our example, your /etc/dahdi/modules file should contain the following lines:

wcb4xxp
wct4xxp

Note: In the /usr/share/dahdi/modules.sample file you can find all the modules supported in your
XiVO version.

Apply the configuration

To apply the configuration, restart the services:

xivo-service restart

Next step

Now that you have loaded the correct module for your card you must:

1. check if you need to follow one of the Specific configuration sections below,

2. and continue with the next configuration step which is to configure the echo canceller.

190 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Specific configuration

This section lists some specific configuration. You should not follow them unless you have a specific need.

TE13x, TE23x, TE43x: E1/T1 selection With E1/T1 cards you must select the correct line mode between:

• E1 : the European standard,

• and T1 : North American standard

For old generation cards (TE12x, TE20x, TE40x series) the line mode is selected via a physical jumper.

For new generation cards like TE13x, TE23x, TE43x series the line mode is selected by configuration.

If you’re configuring one of these TE13x, T23x, T43x cards then you MUST create a configuration file to set the
line mode to E1:

1. Create the file /etc/modprobe.d/xivo-wcte-linemode.conf:

touch /etc/modprobe.d/xivo-wcte-linemode.conf

2. Fill it with the following lines replacing DAHDI_MODULE_NAME by the correct module name (wcte13xp,
wcte43x ...):

set the card in E1/T1 mode
options DAHDI_MODULE_NAME default_linemode=e1

3. Then, restart the services:

xivo-service restart

Hardware Echo-cancellation

It is recommended to use telephony cards with an hardware echo-canceller module.

Warning: with TE13x, TE23x and TE43x cards, you MUST install the echo-canceller firmware. Otherwise
the card won’t work properly.

Know which firmware you need

If you have an hardware echo-canceller module you have to install its firmware.

You first need to know which firmware you have to install. The simplest way is to restart dahdi and then to lookup
in the dmesg which firmware does DAHDI request at startup:

xivo-service restart
dmesg |grep firmware
[5461540.738209] wct4xxp 0000:01:0e.0: firmware: agent aborted loading dahdi-fw-oct6114-064.bin (not found?)
[5461540.738310] wct4xxp 0000:01:0e.0: VPM450: firmware dahdi-fw-oct6114-064.bin not available from userspace

In the example above you can see that the module wct4xxp requested the dahdi-fw-oct6114-064.bin
firmware file but did not found it. But you now know that you need the dahdi-fw-oct6114-064.bin
firmware.

Install the firmware

When you know which firmware you need you can install it with xivo-fetchfw utility.

1. Use xivo-fetchfw to find the name of the package. You can search for digium occurrences in the
available packages:

1.8. Administration 191

XiVO Documentation, Release 16.08

xivo-fetchfw search digium

2. Find the package name which matches the firmware file you need. In our example,
we need the dahdi-fw-oct6114-064.bin file which is supplied by the package named
digium-oct6114-064:

xivo-fetchfw install digium-oct6114-064

Activate the Hardware Echo-cancellation

Now that you installed hardware echo-canceller firmware you must activate it in
/etc/asterisk/chan_dahdi.conf file:

echocancel = 1

Apply the configuration

To apply the configuration, restart the services:

xivo-service restart

Next step

Now that you have loaded the correct module for your card you must:

1. check if you need to follow one of the Specific configuration sections below,

2. and continue with the next configuration step which is to configure your card according to the operator
links.

Specific configuration

This section describes some specific configuration. You should not follow them unless you have a specific need.

Use the Hardware Echo-canceller for DTMF detection If you have an hardware echo-canceller you may want
to use it to detect the DTMF signal (instead of asterisk).

1. Create the file /etc/modprobe.d/xivo-hwec-dtmf.conf:

touch /etc/modprobe.d/xivo-hwec-dtmf.conf

2. Fill it with the following lines replacing DAHDI_MODULE_NAME by the correct module name (wcte13xp,
wct4xxp ...):

options DAHDI_MODULE_NAME vpmdtmfsupport=1

3. Then, restart the services:

xivo-service restart

Card configuration

Now that you have loaded the correct DAHDI modules and configured the echo canceller you can proceed with
the card configuration. Follow one of the appropriate link below :

192 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

BRI card configuration

Verifications Verify that the wcb4xxp module is uncommented in /etc/dahdi/modules.

If it wasn’t, do again the step Load the correct DAHDI modules.

Generate DAHDI configuration Issue the command:

dahdi_genconf

Warning: it will erase all existing configuration in /etc/dahdi/system.conf and
/etc/asterisk/dahdi-channels.conf files !

Configure

DAHDI system.conf configuration First step is to check /etc/dahdi/system.conf file:

• check the span numbering,

• if needed change the clock source,

See detailed explanations of this file in the /etc/dahdi/system.conf section.

Below is an example for a typical french BRI line span:

Span 1: B4/0/1 "B4XXP (PCI) Card 0 Span 1" (MASTER) RED
span=1,1,0,ccs,ami
termtype: te
bchan=1-2
hardhdlc=3
echocanceller=mg2,1-2

Asterisk dahdi-channels.conf configuration Then you have to modify the
/etc/asterisk/dahdi-channels.conf file:

• remove the unused lines like:

context = default
group = 63

• change the context lines if needed,

• the signalling should be one of:

– bri_net

– bri_cpe

– bri_net_ptmp

– bri_cpe_ptmp

See some explanations of this file in the /etc/asterisk/dahdi-channels.conf section.

Below is an example for a typical french BRI line span:

; Span 1: B4/0/1 "B4XXP (PCI) Card 0 Span 1" (MASTER) RED
group = 0,11 ; belongs to group 0 and 11
context = from-extern ; incoming call to this span will be sent in 'from-extern' context
switchtype = euroisdn
signalling = bri_cpe ; use 'bri_cpe' signalling
channel => 1-2 ; the above configuration applies to channels 1 and 2

1.8. Administration 193

XiVO Documentation, Release 16.08

Next step Now that you have configured your BRI card:

1. you must check if you need to follow one of the Specific configuration sections below,

2. then, if you have another type of card to configure, you can go back to the configure your card section,

3. if you have configured all your card you have to configure the DAHDI interconnections in the web interface.

Specific configuration You will find below 3 configurations that we recommend for BRI lines. These configu-
rations were tested on different type of french BRI lines with success.

Note: The pre-requisites are:

• XiVO >= 14.12,

• Use per-port dahdi interconnection (see the DAHDI interconnections section)

If you don’t know which one to configure we recommend that you try each one after the other in this order:

1. PTMP without layer1/layer2 persistence

2. PTMP with layer1/layer2 persistence

3. PTP with layer1/layer2 persistence

PTMP without layer1/layer2 persistence In this mode we will configure asterisk and DAHDI:

• to use Point-to-Multipoint (PTMP) signalling,

• and to leave Layer1 and Layer2 DOWN

Follow theses steps to configure:

1. Before the line #include dahdi-channels.conf add, in file
/etc/asterisk/chan_dahdi.conf, the following lines:

layer1_presence = ignore
layer2_persistence = leave_down

2. In the file /etc/asterisk/dahdi-channels.conf use bri_cpe_ptmp signalling:

signalling = bri_cpe_ptmp

3. Create the file /etc/modprobe.d/xivo-wcb4xxp.conf to deactivate the layer1 persistence:

touch /etc/modprobe.d/xivo-wcb4xxp.conf

4. Fill it with the following content:

options wcb4xxp persistentlayer1=0

5. Then, apply the configuration by restarting the services:

xivo-service restart

Note: Expected behavior:

• The dahdi show status command should show the BRI spans in RED status if there is no call,

• For outgoing calls the layer1/layer2 should be brought back up by the XiVO (i.e. asterisk/chan_dahdi),

• For incoming calls the layer1/layer2 should be brought back up by the operator,

• You can consider that there is a problem only if incoming or outgoing calls are rejected.

194 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

PTMP with layer1/layer2 persistence In this mode we will configure asterisk and DAHDI:

• to use Point-to-Multipoint (PTMP) signalling,

• and to keep Layer1 and Layer2 UP

Follow theses steps to configure:

1. Before the line #include dahdi-channels.conf add, in file
/etc/asterisk/chan_dahdi.conf, the following lines:

layer1_presence = required
layer2_persistence = keep_up

2. In the file /etc/asterisk/dahdi-channels.conf use bri_cpe_ptmp signalling:

signalling = bri_cpe_ptmp

3. If it exists, delete the file /etc/modprobe.d/xivo-wcb4xxp.conf:

rm /etc/modprobe.d/xivo-wcb4xxp.conf

4. Then, apply the configuration by restarting the services:

xivo-service restart

Note: Expected behavior:

• The dahdi show status command should show the BRI spans in OK status even if there is no call,

• In asterisk CLI you may see the spans going Up/Down/Up : it is a problem only if incoming or outgoing
calls are rejected.

PTP with layer1/layer2 persistence In this mode we will configure asterisk and DAHDI:

• to use Point-to-Point (PTP) signalling,

• and use default behavior for Layer1 and Layer2.

Follow theses steps to configure:

1. In file /etc/asterisk/chan_dahdi.conf remove all occurrences of layer1_presence and
layer2_persistence options.

2. In the file /etc/asterisk/dahdi-channels.conf use bri_cpe signalling:

signalling = bri_cpe

3. If it exists, delete the file /etc/modprobe.d/xivo-wcb4xxp.conf:

rm /etc/modprobe.d/xivo-wcb4xxp.conf

4. Then, apply the configuration by restarting the services:

xivo-service restart

Note: Expected behavior:

• The dahdi show status command should show the BRI spans in OK status even if there is no call,

• In asterisk CLI you should not see the spans going Up and Down : if it happens, it is a problem only if
incoming or outgoing calls are rejected.

1.8. Administration 195

XiVO Documentation, Release 16.08

PRI card configuration

Verifications Verify that the correct module is configured in /etc/dahdi/modules depending on the card
you installed in your server.

If it wasn’t, do again the step Load the correct DAHDI modules

Warning: TE13x, TE23x, TE43x cards :
• these cards need a specific dahdi module configuration. See TE13x, TE23x, TE43x: E1/T1 selection

paragraph,
• you MUST install the correct echo-canceller firmware to be able to use these cards. See Hardware

Echo-cancellation paragraph.

Generate DAHDI configuration Issue the command:

dahdi_genconf

Warning: it will erase all existing configuration in /etc/dahdi/system.conf and
/etc/asterisk/dahdi-channels.conf files !

Configure

DAHDI system.conf configuration First step is to check /etc/dahdi/system.conf file:

• check the span numbering,

• if needed change the clock source,

• usually (at least in France) you should remove the crc4

See detailed explanations of this file in the /etc/dahdi/system.conf section.

Below is an example for a typical french PRI line span:

Span 1: TE2/0/1 "T2XXP (PCI) Card 0 Span 1" CCS/HDB3/CRC4 RED
span=1,1,0,ccs,hdb3
termtype: te
bchan=1-15,17-31
dchan=16
echocanceller=mg2,1-15,17-31

Asterisk dahdi-channels.conf configuration Then you have to modify the
/etc/asterisk/dahdi-channels.conf file:

• remove the unused lines like:

context = default
group = 63

• change the context lines if needed,

• the signalling should be one of:

– pri_net

– pri_cpe

Below is an example for a typical french PRI line span:

196 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

; Span 1: TE2/0/1 "T2XXP (PCI) Card 0 Span 1" CCS/HDB3/CRC4 RED
group = 0,11 ; belongs to group 0 and 11
context = from-extern ; incoming call to this span will be sent in 'from-extern' context
switchtype = euroisdn
signalling = pri_cpe ; use 'pri_cpe' signalling
channel => 1-15,17-31 ; the above configuration applies to channels 1 to 15 and 17 to 31

Next step Now that you have configured your PRI card:

1. you must check if you need to follow one of the Specific configuration sections below,

2. then, if you have another type of card to configure, you can go back to the configure your card section,

3. if you have configured all your card you have to configure the DAHDI interconnections in the web interface.

Specific configuration

Multiple PRI cards and sync cable If you have several PRI cards in your server you should link them with a
synchronization cable to share the exact same clock.

To do this, you need to:

• use the coding wheel on the Digium cards to give them an order of recognition in DAHDI/Asterisk (see
Digium_telephony_cards_support),

• daisy-chain the cards with a sync cable (see Digium_telephony_cards_support),

• load the DAHDI module with the timingcable=1 option.

Create /etc/modprobe.d/xivo-timingcable.conf file and insert the line:

options DAHDI_MODULE_NAME timingcable=1

Where DAHDI_MODULE_NAME is the DAHDI module name of your card (e.g. wct4xxp for a TE205P).

Analog card configuration

Limitations

• XiVO does not support hardware echocanceller on the TDM400 card. Users of TDM400 card willing to
setup an echocanceller will have to use a software echocanceller like OSLEC.

Verifications Verify that one of the {wctdm,wctdm24xxp} module is uncommented in
/etc/dahdi/modules depending on the card you installed in your server.

If it wasn’t, do again the step Load the correct DAHDI modules

Note: Analog cards work with card module. You must add the appropriate card module to your analog card.
Either:

• an FXS module (for analog equipment - phones, ...),

• an FXO module (for analog line)

1.8. Administration 197

http://www.digium.com/en/support/telephony-cards
http://www.digium.com/en/support/telephony-cards

XiVO Documentation, Release 16.08

Generate DAHDI configuration Issue the command:

dahdi_genconf

Warning: it will erase all existing configuration in /etc/dahdi/system.conf and
/etc/asterisk/dahdi-channels.conf files !

Configure

DAHDI system.conf configuration First step is to check /etc/dahdi/system.conf file:

• check the span numbering,

See detailed explanations of this file in the /etc/dahdi/system.conf section.

Below is an example for a typical FXS analog line span:

Span 2: WCTDM/4 "Wildcard TDM400P REV I Board 5"
fxoks=32
echocanceller=mg2,32

Asterisk dahdi-channels.conf configuration Then you have to modify the
/etc/asterisk/dahdi-channels.conf file:

• remove the unused lines like:

context = default
group = 63

• change the context and callerid lines if needed,

• the signalling should be one of:

– fxo_ks for FXS lines -yes it is the reverse

– fxs_ks for FXO lines - yes it is the reverse

Below is an example for a typical french PRI line span:

; Span 2: WCTDM/4 "Wildcard TDM400P REV I Board 5"
signalling=fxo_ks
callerid="Channel 32" <4032>
mailbox=4032
group=5
context=default
channel => 32

Next step Now that you have configured your PRI card:

1. you must check if you need to follow one of the Specific configuration sections below,

2. then, if you have another type of card to configure, you can go back to the configure your card section,

3. if you have configured all your card you have to configure the DAHDI interconnections in the web interface.

Specific configuration

FXS modules If you use FXS modules you should create the file /etc/modprobe.d/xivo-tdm and insert
the line:

198 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

options DAHDI_MODULE_NAME fastringer=1 boostringer=1

Where DAHDI_MODULE_NAME is the DAHDI module name of your card (e.g. wctdm for a TDM400P).

FXO modules If you use FXO modules you should create file /etc/modprobe.d/xivo-tdm:

options DAHDI_MODULE_NAME opermode=FRANCE

Where DAHDI_MODULE_NAME is the DAHDI module name of your card (e.g. wctdm for a TDM400P).

Voice Compression Card configuration

Verifications Verify that the wctc4xxp module is uncommented in /etc/dahdi/modules.

If it wasn’t, do again the step Load the correct DAHDI modules.

Configure To configure the card you have to:

1. Install the card firmware:

xivo-fetchfw install digium-tc400m

2. Comment out the following line in /etc/asterisk/modules.conf:

noload = codec_dahdi.so

3. Restart asterisk:

service asterisk restart

Next step Now that you have configured your Voice Compression card:

1. you must check if you need to follow one of the Specific configuration sections below,

2. then, if you have another type of card to configure, you can go back to the configure your card section.

Specific configuration

Select the transcoding mode The Digium TC400 card can be used to transcode:

• 120 G.729a channels,

• 92 G.723.1 channels,

• or 92 G.729a/G.723.1 channels.

Depending on the codec you want to transcode, you can modify the mode parameter which can take the following
value:

• mode = mixed : this the default value which activates transcoding for 92 channels in G.729a or G.723.1 (5.3
Kbit and 6.3 Kbit)

• mode = g729 : this option activates transcoding for 120 channels in G.729a

• mode = g723 : this option activates transcoding for 92 channels in G.723.1 (5.3 Kbit et 6.3 Kbit)

1. Create the file /etc/modprobe.d/xivo-transcode.conf:

touch /etc/modprobe.d/xivo-transcode.conf

2. And insert the following lines:

1.8. Administration 199

XiVO Documentation, Release 16.08

options wctc4xxp mode=g729

3. Apply the configuration by restarting the services:

xivo-service restart

4. Verify that the card is correctly seen by asterisk with the transcoder show CLI command - this com-
mand should show the encoders/decoders registered by the TC400 card:

*CLI> transcoder show
0/0 encoders/decoders of 120 channels are in use.

Apply configuration

If you didn’t do it already, you have to restart the services to apply the configuration:

xivo-service restart

At the end of this page you will also find some general notes and DAHDI.

Notes on configuration files

/etc/dahdi/system.conf

A span is created for each card port. Below is an example of a standard E1 port:

span=1,1,0,ccs,hdb3
dchan=16
bchan=1-15,17-31
echocanceller=mg2,1-15,17-31

Each span has to be declared with the following information:

span=<spannum>,<timing>,<LBO>,<framing>,<coding>[,crc4]

• spannum : corresponds to the span number. It starts to 1 and has to be incremented by 1 at each new span.
This number MUST be unique.

• timing : describes the how this span will be considered regarding the synchronization :

– 0 : do not use this span as a synchronization source,

– 1 : use this span as the primary synchronization source,

– 2 : use this span as the secondary synchronization source etc.

• LBO : 0 (not used)

• framing : correct values are ccs or cas. For ISDN lines, ccs is used.

• coding : correct values are hdb3 or ami. For example, hdb3 is used for an E1 (PRI) link, whereas ami
is used for T0 (french BRI) link.

• crc4 : this is a framing option for PRI lines. For example it is rarely use in France.

Note that the dahdi_genconf command should usually give you the correct parameters (if you correctly set
the cards jumper). All these information should be checked with your operator.

/etc/asterisk/chan_dahdi.conf

This file contains the general parameters of the DAHDI channel. It is not generated via the dahdi_genconf
command.

200 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

/etc/asterisk/dahdi-channels.conf

This file contains the parameters of each channel. It is generated via the dahdi_genconf command.

Below is an example of span definition:

group=0,11
context=from-extern
switchtype = euroisdn
signalling = pri_cpe
channel => 1-15,17-31

Note that parameters are read from top to bottom in a last match fashion and are applied to the given channels
when it reads a line channel =>.

Here the channels 1 to 15 and 17 to 31 (it is a typical E1) are set:

• in groups 0 and 11 (see DAHDI interconnections)

• in context from-extern : all calls received on these channels will be sent in the context from-extern

• and configured with switchtype euroisdn and signalling pri_cpe

Debug

Check IRQ misses

It’s always useful to verify if there isn’t any missed IRQ problem with the cards.

Check:

cat /proc/dahdi/

If the IRQ misses counter increments, it’s not good:

cat /proc/dahdi/1
Span 1: WCTDM/0 "Wildcard TDM800P Board 1" (MASTER)
IRQ misses: 1762187

1 WCTDM/0/0 FXOKS (In use)
2 WCTDM/0/1 FXOKS (In use)
3 WCTDM/0/2 FXOKS (In use)
4 WCTDM/0/3 FXOKS (In use)

Digium gives some hints in their Knowledge Base here : http://kb.digium.com/entry/1/63/

PRI Digium cards needs 1000 interruption per seconds. If the system cannot supply them, it increment the IRQ
missed counter.

As indicated in Digium KB you should avoid shared IRQ with other equipments (like HD or NIC interfaces).

1.8.19 Incall

General Configuration

You can configure incoming calls settings in Services → IPBX → Call Management → Incoming calls.

DID (Direct Inward Dialing) Configuration

When a “+” character is prepended a called DID, the “+” character is discarded.

Example:

1.8. Administration 201

http://kb.digium.com/entry/1/63/

XiVO Documentation, Release 16.08

Bob has a DID with number 1000. Alice can call Bob by dialing either 1000 or +1000, without
configuring another DID.

1.8.20 Interconnections

Interconnect two XiVO directly

Fig. 1.62: Situation diagram

Interconnecting two XiVO will allow you to send and receive calls between the users configured on both sides.

The steps to configure the interconnections are:

• Establish the trunk between the two XiVO, that is the SIP connection between the two servers

• Configure outgoing calls on the server(s) used to emit calls

• Configure incoming calls on the server(s) used to receive calls

For now, only SIP interconnections have been tested.

Establish the trunk

The settings below allow a trunk to be used in both directions, so it doesn’t matter which server is A and which is
B.

Consider XiVO A wants to establish a trunk with XiVO B.

On XiVO B, go on page Services → IPBX → Trunk management → SIP Protocol, and create a SIP trunk:

Name : xivo-trunk
Username: xivo-trunk
Password: pass
Connection type: Friend
IP addressing type: Dynamic
Context: <see below>

Note: For the moment, Name and Username need to be the same string.

The Context field will determine which extensions will be reachable by the other side of the trunk:

• If Context is set to default, then every user, group, conf room, queue, etc. that have an extension
if the default context will be reachable directly by the other end of the trunk. This setting can ease
configuration if you manage both ends of the trunk.

• If you are establishing a trunk with a provider, you probably don’t want everything to be available to every-
one else, so you can set the Context field to Incalls. By default, there is no extension available in this

202 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

context, so we will be able to configure which extension are reachable by the other end. This is the role of
the incoming calls: making bridges from the Incalls context to other contexts.

On XiVO A, create the other end of the SIP trunk on the Services → IPBX → Trunk management → SIP Protocol:

Name: xivo-trunk
Username: xivo-trunk
Password: pass
Identified by: Friend
Connection type: Static
Address: <XiVO B IP address or hostname>
Context: Incalls

Register tab:

Register: checked
Transport: udp
Username: xivo-trunk
Password: pass
Remote server: <XiVO B IP address or hostname>

On both XiVO, activate some codecs, Services → IPBX → General Settings → SIP protocol, tab Signaling:

Enabled codecs: at least GSM (audio)

At that point, the Asterisk command sip show registry on XiVO B should print a line showing that XiVO
A is registered, meaning your trunk is established.

Set the outgoing calls

The outgoing calls configuration will allow XiVO to know which extensions will be called through the trunk.

On the call emitting server(s), go on the page Services → IPBX → Call management → Outgoing calls and add
an outgoing call.

Tab General:

Trunks: xivo-trunk

Tab Exten:

Exten: **99. (note the period at the end)
Stripnum: 4

This will tell XiVO: if any extension begins with **99, then try to dial it on the trunk xivo-trunk, after
removing the 4 first characters (the **99 prefix).

The most useful special characters to match extensions are:

. (period): will match one or more characters
X: will match only one character

You can find more details about pattern matching in Asterisk (hence in XiVO) on the Asterisk wiki.

Set the incoming calls

Now that we have calls going out from a XiVO, we need to route incoming calls on the XiVO destination.

Note: This step is only necessary if the trunk is linked to an Incoming calls context.

To route an incoming call to the right destination in the right context, we will create an incoming call in Services
→ IPBX → Call management → Incoming calls.

1.8. Administration 203

https://wiki.asterisk.org/wiki/display/AST/Pattern+Matching

XiVO Documentation, Release 16.08

Tab General:

DID: 101
Context: Incalls
Destination: User
Redirect to: someone

This will tell XiVO: if you receive an incoming call to the extension 101 in the context Incalls, then route it
to the user someone. The destination context will be found automatically, depending on the context of the line
of the given user.

So, with the outgoing call set earlier on XiVO A, and with the incoming call above set on XiVO B, a user on XiVO
A will dial **99101, and the user someone will ring on XiVO B.

Interconnect a XiVO to a VoIP provider

When you want to send and receive calls to the global telephony network, one option is to subscribe to a VoIP
provider. To receive calls, your XiVO needs to tell your provider that it is ready and to which IP the calls must
be sent. To send calls, your XiVO needs to authenticate itself, so that the provider knows that your XiVO is
authorized to send calls and whose account must be credited with the call fare.

The steps to configure the interconnections are:

• Establish the trunk between the two XiVO, that is the SIP connection between the two servers

• Configure outgoing calls on the server(s) used to emit calls

• Configure incoming calls on the server(s) used to receive calls

Establish the trunk

You need the following information from your provider:

• a username

• a password

• the name of the provider VoIP server

• a public phone number

On your XiVO, go on page Services → IPBX → Trunk management → SIP Protocol, and create a SIP/IAX trunk:

Name : provider_username
Username: provider_username
Password: provider_password
Connection type: Peer
IP addressing type: voip.provider.example.com
Context: Incalls (or another incoming call context)

Register tab:

Register: checked
Transport: udp
Name: provider_username
Username: provider_username
Password: provider_password
Remote server: voip.provider.example.com

Note: For the moment, Name and Username need to be the same value.

If your XiVO is behind a NAT device or a firewall, you should set the following:

204 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Monitoring: Yes

This option will make Asterisk send a signal to the VoIP provider server every 60 seconds (default settings), so
that NATs and firewall know the connection is still alive. If you want to change the value of this cycle period, you
have to select the appropriate value of the following parameter:

Qualify Frequency:

At that point, the Asterisk command sip show registry should print a line showing that you are registered,
meaning your trunk is established.

Set the outgoing calls

The outgoing calls configuration will allow XiVO to know which extensions will be called through the trunk.

Go on the page Services → IPBX → Call management → Outgoing calls and add an outgoing call.

Tab General:

Trunks: provider_username

Tab Exten:

Exten: 418. (note the period at the end)

This will tell XiVO: if an internal user dials a number beginning with 418, then try to dial it on the trunk
provider_username.

The most useful special characters to match extensions are:

. (period): will match one or more characters
X: will match only one character

You can find more details about pattern matching in Asterisk (hence in XiVO) on the Asterisk wiki.

Set the incoming calls

Now that we have calls going out, we need to route incoming calls.

To route an incoming call to the right destination in the right context, we will create an incoming call in Services
→ IPBX → Call management → Incoming calls.

Tab General:

DID: your_public_phone_number
Context: Incalls (the same than configured in the trunk)
Destination: User
Redirect to: the_front_desk_guy

This will tell XiVO: if you receive an incoming call to the public phone number in the context Incalls, then
route it to the user the_front_desk_guy. The destination context will be found automatically, depending on
the context of the line of the given user.

Interconnect a XiVO to a PBX via an ISDN link

The goal of this architecture can be one of:

• start a smooth migration between an old telephony system towards IP telephony with XiVO

• bring new features to the PBX like voicemail, conference, IVR etc.

1.8. Administration 205

https://wiki.asterisk.org/wiki/display/AST/Pattern+Matching

XiVO Documentation, Release 16.08

First, XiVO is to be integrated transparently between the operator and the PBX. Then users or features are to be
migrated from the PBX to the XiVO.

Warning: It requires a special call routing configuration on both the XiVO and the PBX.

Fig. 1.63: Interconnect a XiVO to a PBX

Hardware

General uses You must have an ISDN card able to support both the provider and PBX ISDN links.

Example : If you have two provider links towards the PBX, XiVO should have a 4 spans card : two towards the
provider, and two towards the PBX.

If you use two cards If you use two cards, you have to :

• Use a cable for clock synchronization between the cards

• Configure the wheel to define the cards order in the system.

Please refer to the section Sync cable

Configuration

You have now to configure two files :

1. /etc/dahdi/system.conf

2. /etc/asterisk/dahdi-channels.conf

system.conf You mainly need to configure the timing parameter on each span. As a general rule :

• Provider span - XiVO will get the clock from the provider : the timing value is to be different from 0 (see
/etc/dahdi/system.conf section)

• PBX span - XiVO will provide the clock to the PBX : the timing value is to be set to 0 (see
/etc/dahdi/system.conf section)

206 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Below is an example with two provider links and two PBX links:

Span 1: TE4/0/1 "TE4XXP (PCI) Card 0 Span 1" (MASTER)
span=1,1,0,ccs,hdb3 # Span towards Provider
bchan=1-15,17-31
dchan=16
echocanceller=mg2,1-15,17-31

Span 2: TE4/0/2 "TE4XXP (PCI) Card 0 Span 2"
span=2,2,0,ccs,hdb3 # Span towards Provider
bchan=32-46,48-62
dchan=47
echocanceller=mg2,32-46,48-62

Span 3: TE4/0/3 "TE4XXP (PCI) Card 0 Span 3"
span=3,0,0,ccs,hdb3 # Span towards PBX
bchan=63-77,79-93
dchan=78
echocanceller=mg2,63-77,79-93

Span 4: TE4/0/4 "TE4XXP (PCI) Card 0 Span 4"
span=4,0,0,ccs,hdb3 # Span towards PBX
bchan=94-108,110-124
dchan=109
echocanceller=mg2,94-108,110-124

dahdi-channels.conf In the file /etc/asterisk/dahdi-channels.conf you need to adjust, for each
span :

• group : the group number (e.g. 0 for provider links, 2 for PBX links),

• context : the context (e.g. from-extern for provider links, from-pabx for PBX links)

• signalling : pri_cpe for provider links, pri_net for PBX side

Warning: most of the PBX uses overlap dialing for some destination (digits are sent one by one instead of by
block). In this case, the overlapdial parameter has to be activated on the PBX spans:

overlapdial = incoming

Below an example of /etc/asterisk/dahdi-channels.conf:

; Span 1: TE4/0/1 "TE4XXP (PCI) Card 0 Span 1" (MASTER)
group=0,11
context=from-extern
switchtype = euroisdn
signalling = pri_cpe
channel => 1-15,17-31

; Span 2: TE4/0/2 "TE4XXP (PCI) Card 0 Span 2"
group=0,12
context=from-extern
switchtype = euroisdn
signalling = pri_cpe
channel => 32-46,48-62

; PBX link #1
; Span 3: TE4/0/3 "TE2XXP (PCI) Card 0 Span 3"
group=2,13
context=from-pabx ; special context for PBX incoming calls
overlapdial=incoming ; overlapdial activation
switchtype = euroisdn

1.8. Administration 207

XiVO Documentation, Release 16.08

signalling = pri_net ; behave as the NET termination
channel => 63-77,79-93

; PBX link #2
; Span 4: TE4/0/4 "T4XXP (PCI) Card 0 Span 4"
group=2,14
context=from-pabx ; special context for PBX incoming calls
overlapdial=incoming ; overlapdial activation
switchtype = euroisdn
signalling = pri_net ; behave as the NET termination
channel => 94-108,110-124

Passthru function

Route PBX incoming calls We first need to create a route for calls coming from the PBX

Create a file named pbx.conf in the directory /etc/asterisk/extensions_extra.d/, # Add the
following lines in the file:

[from-pabx]
exten = _X.,1,NoOp(### Call from PBX ${CARLLERID(num)} towards ${EXTEN} ###)
exten = _X.,n,Goto(default,${EXTEN},1)

This dialplan routes incoming calls from the PBX in the default context of XiVO. It enables call from the
PBX : * towards a SIP phone (in default context) * towards outgoing destniation (via the to-extern context
included in default context)

Create the to-pabx context In the webi, create a context named to-pabx:

• Name : to-pabx

• Display Name : TO PBX

• Context type : Outcall

• Include sub-contexts : No context inclusion

This context will permit to route incoming calls from the XiVO to the PBX.

208 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Route incoming calls to PBX In our example, incoming calls on spans 1 and 2 (spans pluged to the provider)
are routed by from-extern context. We are going to create a default route to redirect incoming calls to the PBX.

Create an incoming call as below :

• DID : XXXX (according to the number of digits sent by the provider)

• Context : Incoming calls

• Destination : Customized

• Command : Goto(to-pabx,${XIVO_DSTNUM},1)

Create the interconnections You have to create two interconnections :

• provider side : dahdi/g0

• PBX side : dahdi/g2

In the menu Services → IPBX → Trunk management → Customized page :

• Name : t2-operateur

• Interface : dahdi/g0

• Context : to-extern

The second interconnection :

• Name : t2-pabx

• Interface : dahdi/g2

• Context : to-pabx

1.8. Administration 209

XiVO Documentation, Release 16.08

Create outgoing calls You must create two rules of outgoing calls in the menu Services → IPBX → Call
management → Outgoing calls page :

1. Redirect calls to the PBX :

• Name : fsc-pabx

• Context : to-pabx

• Trunks : choose the t2-pabx interconnection

In the extensions tab :

• Exten : XXXX

2. Create a rule “fsc-operateur”:

• Name : fsc-operateur

• Context : to-extern

• Trunks : choose the “t2-operateur” interconnection

In the extensions tab:

exten = X.

210 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Specific VoIP providers

Simon Telephonics

The following configuration is based on the example found here

• username: GV18005551212

• password: password

• exten: 18005551212

• host: gvgw.simonics.com

General SIP configuration Under Services → IPBX → General settings → SIP Protocol.

• General

– Match users with ‘username’ field: checked

Trunk settings Under Services → IPBX → Trunk management → SIP Protocol.

• General

– Name: GV18005551212

– Authentication username: GV18005551212

– Password: password

– Caller ID: 18005551212

– Connection type: Friend

– IP Addressing type: static

* gvgw.simonics.com

– Context: <your incoming call context>

• Register

– Register: checked

– Transport: UDP

– Name: GV18005551212

– Password: password

– Remote Server: GV18005551212

– Contact: 18005551212

1.8. Administration 211

http://support.simonics.com/support/solutions/articles/3000033840-asterisk-sip-conf

XiVO Documentation, Release 16.08

• Signaling

– Monitoring: Yes

Outgoing calls See the Set the outgoing calls section.

Incoming calls See the Set the incoming calls section.

Create an interconnection

There are three types of interconnections :

• Customized

• SIP

• IAX

212 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Customized interconnections

Customized interconnections are mainly used for interconnections using DAHDI or Local channels:

• Name : it is the name which will appear in the outcall interconnections list,

• Interface : this is the channel name (for DAHDI see DAHDI interconnections)

• Interface suffix (optional) : a suffix added after the dialed number (in fact the Dial command will dial:

<Interface>/<EXTEN><Interface suffix>

• Context : currently not relevant

DAHDI interconnections To use your DAHDI links you must create a customized interconnection.

Name : the name of the interconnection like e1_span1 or bri_port1

Interface : must be of the form dahdi/[group order][group number] where :

• group order is one of :

– g : pick the first available channel in group, searching from lowest to highest,

– G : pick the first available channel in group, searching from highest to lowest,

– r : pick the first available channel in group, going in round-robin fashion (and remembering where it
last left off), searching from lowest to highest,

– R : pick the first available channel in group, going in round-robin fashion (and remembering where it
last left off), searching from highest to lowest.

• group number is the group number to which belongs the span as defined in the /etc/asterisk/dahdi-
channels.conf .

Warning: if you use a BRI card you MUST use per-port dahdi groups. You should not use a group like g0
which spans over several spans.

For example, add an interconnection to the menu Services → IPBX → Trunk management → Customized

Name : interconnection name
Interface : dahdi/g0

Debug

Interesting Asterisk commands:

sip show peers
sip show registry
sip set debug on

1.8. Administration 213

XiVO Documentation, Release 16.08

Caller ID

When setting up an interconnection with the public network or another PBX, it is possible to set a caller ID in
different places. Each way to configure a caller ID has it’s own use case.

The format for a caller ID is the following "My Name" <9999> If you don’t set the number part of the caller
ID, the dialplan’s number will be used instead. This might not be a good option in most cases.

Outgoing call caller ID

When you create an outgoing call, it’s possible to set the it to internal, using the check box in the outgoing call
configuration menu. When this option is activated, the caller’s caller ID will be forwarded to the trunk. This
option is use full when the other side of the trunk can reach the user with it’s caller ID number.

When the caller’s caller ID is not usable to the called party, the outgoing call’s caller id can be fixed to a given
value that is more use full to the outside world. Giving the public number here might be a good idea.

A user can also have a forced caller ID for outgoing calls. This can be use full for someone who has his own
public number. This option can be set in the user’s configuration page. The Outgoing Caller ID id option must be
set to Customize. The user can also set his outgoing caller ID to anonymous.

The order of precedence when setting the caller ID in multiple place is the following.

1. Internal

2. User’s outgoing caller ID

214 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.8. Administration 215

XiVO Documentation, Release 16.08

3. Outgoing call

4. Default caller ID

1.8.21 Interactive Voice Response

Introduction

Interactive voice response (IVR) is a technology that allows a computer to interact with humans
through the use of voice and DTMF tones input via keypad. In telecommunications, IVR allows
customers to interact with a company’s host system via a telephone keypad or by speech recognition,
after which they can service their own inquiries by following the IVR dialogue.

—Wikipedia

The IVR function is not yet available in graphic mode in XiVO. This functionality is currently supported using
scripts, also named dialplan.

Use Case: Minimal IVR

Flowchart

Configuration File and Dialplan

First step, you need to create a configuration file, that contain an asterisk context and your IVR dialpan. In our
example, both (file and context) are named dp-ivr-example.

Copy all these lines in the newly created configuration file (in our case, dp-ivr-example) :

[dp-ivr-example]

exten = s,1,NoOp(### dp-ivr-example.conf ###)
same = n,NoOp(Set the context containing your ivr destinations.)
same = n,Set(IVR_DESTINATION_CONTEXT=my-ivr-destination-context)
same = n,NoOp(Set the directory containing your ivr sounds.)
same = n,Set(GV_DIRECTORY_SOUNDS=/var/lib/xivo/sounds/ivr-sounds)
same = n,NoOp(the system answers the call and waits for 1 second before continuing)
same = n,Answer(1000)

same = n,NoOp(the system plays the first part of the audio file "welcome to ...")
same = n(first),Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-welcome-sound)

same = n,NoOp(variable "counter" is set to 0)
same = n(beginning),Set(counter=0)

216 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

same = n,NoOp(variable "counter" is incremented and the label "start" is defined)
same = n(start),Set(counter=$[${counter} + 1])

same = n,NoOp(counter variable is now = ${counter})
same = n,NoOp(waiting for 1 second before reading the message that indicate all choices)
same = n,Wait(1)
same = n,NoOp(play the message ivr-example-choices that contain all choices)
same = n,Background(${GV_DIRECTORY_SOUNDS}/ivr-example-choices)
same = n,NoOp(waiting for DTMF during 5s)
same = n,Waitexten(5)

;##### CHOICE 1 #####
exten = 1,1,NoOp(pressed digit is 1, redirect to 8000 in ${IVR_DESTINATION_CONTEXT} context)
exten = 1,n,Goto(${IVR_DESTINATION_CONTEXT},8000,1)

;##### CHOICE 2 #####
exten = 2,1,NoOp(pressed digit is 2, redirect to 8833 in ${IVR_DESTINATION_CONTEXT} context)
exten = 2,n,Goto(${IVR_DESTINATION_CONTEXT},8833,1)

;##### CHOICE 3 #####
exten = 3,1,NoOp(pressed digit is 3, redirect to 8547 in ${IVR_DESTINATION_CONTEXT} context)
exten = 3,n,Goto(${IVR_DESTINATION_CONTEXT},8547,1)

;##### CHOICE 4 #####
exten = 4,1,NoOp(pressed digit is 4, redirect to start label in this context)
exten = 4,n,Goto(s,start)

;##### TIMEOUT #####
exten = t,1,NoOp(no digit pressed for 5s, process it like an error)
exten = t,n,Goto(i,1)

;##### INVALID CHOICE #####
exten = i,1,NoOp(if counter variable is 3 or more, then goto label "error")
exten = i,n,GotoIf($[${counter}>=3]?error)
exten = i,n,NoOp(pressed digit is invalid and less than 3 errors: the guide ivr-exemple-invalid-choice is now played)
exten = i,n,Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-invalid-choice)

1.8. Administration 217

XiVO Documentation, Release 16.08

exten = i,n,Goto(s,start)
exten = i,n(error),Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-error)
exten = i,n,Hangup()

IVR external dial

To call the script dp-ivr-example from an external phone, you must create an incoming call and redirect the call to
the script dp-ivr-example with the command :

Goto(dp-ivr-example,s,1)

IVR internal dial

To call the script dp-ivr-example from an internal phone you must create an entry in the default context
(xivo-extrafeatures is included in default). The best way is to add the extension in the file
xivo-extrafeatures.conf.

exten => 8899,1,Goto(dp-ivr-example,s,1)

218 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Use Case: IVR with a schedule

In many cases, you need to associate your IVR to a schedule to indicate when your company is closed.

Flowchart

Create Schedule

First step, create your schedule (1) from the menu Call management → Schedules. In the General tab, give a name
(3) to your schedule and configure the open hours (4) and select the sound which is played when the company is
closed.

In the Closed hours tab (6), configure all special closed days (7) and select the sound that indicate to the caller that
the company is exceptionally closed.

The IVR script is now only available during workdays.

Assign Schedule to Incall

Return editing your Incall (Call management → Incoming calls) and assign the newly created schedule in the
“Schedules” tab

1.8. Administration 219

XiVO Documentation, Release 16.08

220 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Use Case: IVR with submenu

Flowchart

Configuration File and Dialplan

Copy all these lines (2 contexts) in a configuration file on your XiVO server :

[dp-ivr-example]

exten = s,1,NoOp(### dp-ivr-example.conf ###)
same = n,NoOp(Set the context containing your ivr destinations.)
same = n,Set(IVR_DESTINATION_CONTEXT=my-ivr-destination-context)
same = n,NoOp(Set the directory containing your ivr sounds.)
same = n,Set(GV_DIRECTORY_SOUNDS=/var/lib/xivo/sounds/ivr-sounds)
same = n,NoOp(the system answers the call and waits for 1 second before continuing)
same = n,Answer(1000)

same = n,NoOp(the system plays the first part of the audio file "welcome to ...")
same = n(first),Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-welcome-sound)

same = n,NoOp(variable "counter" is set to 0)
same = n(beginning),Set(counter=0)

same = n,NoOp(variable "counter" is incremented and the label "start" is defined)
same = n(start),Set(counter=$[${counter} + 1])

same = n,NoOp(counter variable is now = ${counter})
same = n,NoOp(waiting for 1 second before reading the message that indicate all choices)
same = n,Wait(1)
same = n,NoOp(play the message ivr-example-choices that contain all choices)
same = n,Background(${GV_DIRECTORY_SOUNDS}/ivr-example-choices)
same = n,NoOp(waiting for DTMF during 5s)
same = n,Waitexten(5)

;##### CHOICE 1 #####
exten = 1,1,NoOp(pressed digit is 1, redirect to 8000 in ${IVR_DESTINATION_CONTEXT} context)
exten = 1,n,Goto(${IVR_DESTINATION_CONTEXT},8000,1)

;##### CHOICE 2 #####
exten = 2,1,NoOp(pressed digit is 2, redirect to 8833 in ${IVR_DESTINATION_CONTEXT} context)
exten = 2,n,Goto(${IVR_DESTINATION_CONTEXT},8833,1)

;##### CHOICE 3 #####
exten = 3,1,NoOp(pressed digit is 3, redirect to the submenu dp-ivr-submenu)
exten = 3,n,Goto(dp-ivr-submenu,s,1)

;##### CHOICE 4 #####
exten = 4,1,NoOp(pressed digit is 4, redirect to start label in this context)
exten = 4,n,Goto(s,start)

;##### TIMEOUT #####
exten = t,1,NoOp(no digit pressed for 5s, process it like an error)
exten = t,n,Goto(i,1)

;##### INVALID CHOICE #####
exten = i,1,NoOp(if counter variable is 3 or more, then goto label "error")
exten = i,n,GotoIf($[${counter}>=3]?error)
exten = i,n,NoOp(pressed digit is invalid and less than 3 errors: the guide ivr-exemple-invalid-choice is now played)
exten = i,n,Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-invalid-choice)
exten = i,n,Goto(s,start)

1.8. Administration 221

XiVO Documentation, Release 16.08

222 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

exten = i,n(error),Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-error)
exten = i,n,Hangup()

[dp-ivr-submenu]

exten = s,1,NoOp(### dp-ivr-submenu ###)
same = n,NoOp(the system answers the call and waits for 1 second before continuing)
same = n,Answer(1000)

same = n,NoOp(variable "counter" is set to 0)
same = n(beginning),Set(counter=0)

same = n,NoOp(variable "counter" is incremented and the label "start" is defined)
same = n(start),Set(counter=$[${counter} + 1])

same = n,NoOp(counter variable is now = ${counter})
same = n,NoOp(waiting for 1 second before reading the message that indicate all choices)
same = n,Wait(1)
same = n,NoOp(play the message ivr-example-choices that contain all choices)
same = n,Background(${GV_DIRECTORY_SOUNDS}/ivr-example-submenu-choices)
same = n,NoOp(waiting for DTMF during 5s)
same = n,Waitexten(5)

;##### CHOICE 1 #####
exten = 1,1,NoOp(pressed digit is 1, redirect to 8000 in ${IVR_DESTINATION_CONTEXT} context)
exten = 1,n,Goto(${IVR_DESTINATION_CONTEXT},8000,1)

;##### CHOICE 2 #####
exten = 2,1,NoOp(pressed digit is 2, redirect to 8001 in ${IVR_DESTINATION_CONTEXT} context)
exten = 2,n,Goto(${IVR_DESTINATION_CONTEXT},8001,1)

;##### CHOICE 3 #####
exten = 3,1,NoOp(pressed digit is 3, redirect to the previous menu dp-ivr-example)
exten = 3,n,Goto(dp-ivr-example,s,beginning)

;##### TIMEOUT #####
exten = t,1,NoOp(no digit pressed for 5s, process it like an error)
exten = t,n,Goto(i,1)

;##### INVALID CHOICE #####
exten = i,1,NoOp(if counter variable is 3 or more, then goto label "error")
exten = i,n,GotoIf($[${counter}>=3]?error)
exten = i,n,NoOp(pressed digit is invalid and less than 3 errors: the guide ivr-exemple-invalid-choice is now played)
exten = i,n,Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-invalid-choice)
exten = i,n,Goto(s,start)
exten = i,n(error),Playback(${GV_DIRECTORY_SOUNDS}/ivr-example-error)
exten = i,n,Hangup()

1.8.22 Monitoring

The Monitoring section gives an overview of a XiVO system’s status and of all monitored processes. It is divided
into 6 sections :

• System

• Device

• CPU

• Network

1.8. Administration 223

XiVO Documentation, Release 16.08

• Memory

• Other Services

System

Displays generic information about the operating system, network addresses, uptime and load average. Read only.

Device

Displays free/used space on physical storage partitions. Read only.

CPU

Monitors the CPU usage. Read only.

Network

Displays network interfaces and corresponding network traffic. Read only.

Memory

Displays Physical and swap memory usage. Read only.

Other Services

Lists XiVO related processes (most of which are daemons) with their corresponding status, uptime, resource usage
and controls to Restart service (blue button), stop service (red button) and stop monitoring service (grey button).

224 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.8.23 Music on Hold

The menu Services → IPBX → IPBX services → On-hold Music leads to the list of available on-hold musics.

Categories

Available categories are:

• files: play sound files. Formats supported:

Format Name Filename Extension
G.719 .g719
G.723 .g723 .g723sf
G.726 .g726-40 .g726-32 .g726-24 .g726-16
G.729 .g729
GSM .gsm
iLBC .ilbc
Ogg Vorbis .ogg (only mono files sampled at 8000 Hz)
G.711 A-law .alaw .al .alw
G.711 𝜇-law .pcm .ulaw .ul .mu .ulw
G.722 .g722
Au .au
Siren7 .siren7
Siren14 .siren14
SLN .raw .sln .sln12 .sln16 .sln24 .sln32 .sln44 .sln48 .sln96 .sln192
VOX .vox
WAV .wav .wav16
WAV GSM .WAV .wav49

Only 1 audio channel must be present per file, i.e. files must be in mono.

If your music on hold files don’t seem to work, you should look for errors in the asterisk logs.

The on-hold music will always play from the start.

• mp3: play MP3 files.

The on-hold music will play from an arbitrary position on the track, it will not play from the start.

• custom: do not play sound files. Instead, run an external process. That process must send on stdout the
same binary format than WAV files.

Example process: /usr/bin/mpg123 -s --mono -y -f 8192 -r 8000
http://streaming.example.com/stream.mp3

Note: Processes run by custom categories are started as soon as the category is created and will only stop when
the category is deleted. This means that on-hold music fed from online streaming will constantly be receiving
network traffic, even when there are no calls.

1.8.24 Paging

With XiVO, you can define paging (i.e. intercom) extensions to page a group of users. When calling a paging
extension, the phones of the specified users will auto-answer, if they support it.

You can manage your paging extensions via the Services → IPBX → Paging page.

When adding a new paging extension, the number can be any numeric value; to call it, you just need to prefix the
paging number with *11.

1.8. Administration 225

XiVO Documentation, Release 16.08

1.8.25 Parking

With XiVO it is possible to park calls, the same way you may park your car in a car parking. If you define
supervised keys on a phone set for all the users of a system, when a call is parked, all the users are able to see that
some one is waiting for an answer, push the phone key and get the call back to the phone.

There is a default parking number, 700, which is already configured when you install XiVO, but you may change
the default configuration by editing the parking extension in menu Service → IPBX → IPBX Services → Exten-
sions → Advanced → Parking

Using this extension, you may define the parking number used to park call, the parking lots, wether the sytem is
rotating over the parking lots to park the calls, enable parking hint if you want to be able to supervise the parking
using phone keys and other system default parameters.

You have two options in case of parking timeout :

• Callback the peer that parked this call

In this case the call is sent back to the user who parked the call.

• Send park call to the dialplan

In case you don’t want to call back the user who parked the call, you have the option to send the call to
any other extension or application. If the parking times out, the call is sent back to the dialplan in context
[parkedcallstimeout]. You can define this context in a dialplan configuration file Service → IPBX
→ Configuration Files where you may define this context with dialplan commands.

Example:

[parkedcallstimeout]
exten = s,1,Noop('park call time out')
same = n,Playback(hello-world)
same = n,Hangup()

It is also usual to define supervised phone keys to be able to park and unpark calls as in the example below.

1.8.26 Phonebook

A global phone book can be defined in Services → IPBX → IPBX Services → Phonebook. The phone book can
be used from the XiVO Client, from the phones directory look key if the phone is compatible and are used to set
the Caller ID for incoming calls.

226 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.8. Administration 227

XiVO Documentation, Release 16.08

228 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

You can add entries one by one or you can mass-import from a CSV file.

Note: To configure phonebook, see Directories.

Mass-import contacts

Go in the Services → IPBX → IPBX Services → Phonebook section and move your mouse cursor on the + button
in the upper right corner. Select Import a file.

The file to be imported must be a CSV file, with a pipe character | as field delimiter. The file must be encoded in
UTF-8 (without an initial BOM).

Mandatory headers are :

• title (possible values : “mr”, “mrs”, “ms”)

• displayname

Optional headers are :

• firstname

• lastname

• society

• mobilenumber 1

• email

• url

• description

• officenumber 1

• faxnumber 1

• officeaddress1

• officeaddress2

• officecity

• officestate

• officezipcode

• officecountry 2

• homenumber 1

• homeaddress1

• homeaddress2

• homecity

• homestate

• homezipcode

• homecountry 2

• othernumber 1

• otheraddress1

• otheraddress2
1 These fields must contain only numeric characters, no space, point, etc.
2 These fields must contain ISO country codes. The complete list is described here.

1.8. Administration 229

http://www.unicode.org/faq/utf_bom.html#BOM
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

XiVO Documentation, Release 16.08

• othercity

• otherstate

• otherzipcode

• othercountry 2

1.8.27 Provisioning

XiVO supports the auto-provisioning of a large number of telephony Devices, including SIP phones, SIP ATAs,
and even softphones.

Introduction

The auto-provisioning feature found in XiVO make it possible to provision, i.e. configure, a lots of telephony
devices in an efficient and effortless way.

How it works

Here’s a simplified view of how auto-provisioning is supported on a typical SIP hardphone:

1. The phone is powered on

2. During its boot process, the phone sends a DHCP request to obtain its network configuration

3. A DHCP server replies with the phone network configuration + an HTTP URL

4. The phone use the provided URL to retrieve a common configuration file, a MAC-specific configuration
file, a firmware image and some language files.

Building on this, configuring one of the supported phone on XiVO is as simple as:

1. Configuring the DHCP Server

2. Installing the required provd plugin

3. Powering on the phone

4. Dialing the user’s provisioning code from the phone

And voila, once the phone has rebooted, your user is ready to make and receive calls. No manual editing of
configuration files nor fiddling in the phone’s web interface.

Limitations

• Device synchronisation does not work in the situation where multiple devices are connected from behind a
NAPT network equipment. The devices must be resynchronised manually.

External links

• Introduction to provd plugin model

• HTTP/TFTP requests processing in provd - part 1

• HTTP/TFTP requests processing in provd - part 2

230 Chapter 1. Table of Contents

http://blog.xivo.io/introduction-to-the-plugin-model-of-the-new-provisioning-server.html
http://blog.xivo.io/httptftp-requests-processing-in-provd-part-1.html
http://blog.xivo.io/httptftp-requests-processing-in-provd-part-2.html

XiVO Documentation, Release 16.08

Basic Configuration

You have two options to get your phone to be provisioned:

• Set up a DHCP server

• Tell manually each phone where to get the provisioning informations

You may want to manually configure the phones if you are only trying XiVO or if your network configuration
does not allow the phones to access the XiVO DHCP server.

You may want to set up a DHCP server if you have a significant number of phones to connect, as no manual
intervention will be required on each phone.

Configuring the DHCP Server

XiVO includes a DHCP server that facilitate the auto-provisioning of telephony devices. It is not activated by
default.

There’s a few things to know about the peculiarities of the included DHCP server:

• it only answers to DHCP requests from supported devices.

• it only answers to DHCP requests coming from the VoIP subnet (see network configuration).

This means that if your phones are on the same broadcast domain than your computers, and you would like the
DHCP server on your XiVO to handle both your phones and your computers, that won’t do it.

The DHCP server is configured via the Configuration → Network → DHCP page:

Fig. 1.64: Configuration → Network → DHCP

Active Activate/desactivate the DHCP server.

Pool start The lower IP address which will be assigned dynamically. This address should be in the VoIP subnet.
Example: 10.0.0.10.

Pool end The higher IP address which will be assigned dynamically. This address should be in the VoIP subnet.
Example: 10.0.0.99.

Extra network interfaces A list of space-separated network interface name. Example: eth0.

Useful if you have done some custom configuration in the /etc/dhcp/dhcpd_extra.conf file. You
need to explicitly specify the additional interfaces the DHCP server should listen on.

After saving your modifications, you need to click on Apply system configuration for them to be applied.

Installing provd Plugins

The installation and management of provd plugins is done via the Configuration → Provisioning → Plugin page:

The page shows the list of both the installed and installable plugins. You can see if a plugin is installed or not by
looking at the Action column.

Here’s the list of other things that can be done from this page:

1.8. Administration 231

XiVO Documentation, Release 16.08

Fig. 1.65: Configuration → Provisioning → Plugin

• update the list of installable plugins, by clicking on the top right icon. On a fresh XiVO installation, this is
the first thing to do.

• install a new plugin

• upgrade an installed plugin

• uninstall an installed plugin

• edit an installed plugin, i.e. install/uninstall optional files that are specific to each plugin, like firmware or
language files

After installing a new plugin, you are automatically redirected to its edit page. You can then download and install
optional files specific to the plugin. You are strongly advised to install firmware and language files for the phones
you’ll use although it’s often not a strict requirement for the phones to work correctly.

Warning: If you uninstall a plugin that is used by some of your devices, they will be left in an unconfigured
state and won’t be associated to another plugin automatically.

The search box at the top comes in handy when you want to find which plugin to install for your device. For exam-
ple, if you have a Cisco SPA508G, enter “508” in the search box and you should see there’s 1 plugin compatible
with it.

Note: If your device has a number in its model name, you should use only the number as the search keyword
since this is what usually gives the best results.

It’s possible there will be more than 1 plugin compatible with a given device. In these cases, the difference between
the two plugins is usually just the firmware version the plugins target. If you are unsure about which version you
should install, you should look for more information on the vendor website.

It’s good practice to only install the plugins you need and no more.

Alternative plugins repository By default, the list of plugins available for installation are the stable plugins for
the officially supported devices.

232 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

This can be changed in the Configuration → Provisioning → General page, by setting the URL field to one of the
following value:

• http://provd.xivo.io/plugins/1/stable/ – officially supported devices “stable” repository
(default)

• http://provd.xivo.io/plugins/1/testing/ – officially supported devices “testing” reposi-
tory

• http://provd.xivo.io/plugins/1/archive/ – officially supported devices “archive” reposi-
tory

• http://provd.xivo.io/plugins/1/addons/stable/ – community supported devices “sta-
ble” repository

• http://provd.xivo.io/plugins/1/addons/testing/ – community supported devices “test-
ing” repository

The difference between the stable and testing repositories is that the latter might contain plugins that are not
working properly or are still in developement.

The archive repository contains plugins that were once in the stable repository.

After setting a new URL, you must refresh the list of installable plugins by clicking the update icon of the Config-
uration → Provisioning → Plugin page.

How to manually tell the phones to get their configuration

If you have set up a DHCP server on XiVO and the phones can access it, you can skip this section.

The according provisioning plugins must be installed.

Aastra On the web interface of your phone, go to Advanced settings → Configuration server, and enter the
following settings:

1.8. Administration 233

XiVO Documentation, Release 16.08

Polycom On the phone, go to Menu → Settings → Advanced → Admin Settings → Network configuration →
Server Menu and enter the following settings:

• Server type: HTTP

• Server address: http://<XiVO IP address>:8667/000000000000.cfg

Then save and reboot the phone.

Snom On the web interface of your phone, go to Setup → Advanced → Update and enter the following settings:

Yealink On the web interface of your phone, go to Settings → Auto Provision, and enter the following settings:

• Server URL: http://<XiVO IP address>:8667

Save the changes by clicking on the Confirm button and then click on the Autoprovision Now button.

Autoprovisioning a Device

Once you have installed the proper provd plugins for your devices and setup correctly your DHCP server, you can
then connect your devices to your network.

But first, go to Services → IPBX → Devices page. You will then see that no devices are currently known by your
XiVO:

You can then power on your devices on your LAN. For example, after you power on an Aastra 6731i and give it
the time to boot and maybe upgrade its firmware, you should then see the phone having its first line configured as
‘autoprov’, and if you refresh the devices page, you should see that your XiVO now knows about your 6731i:

You can then dial from your Aastra 6731i the provisioning code associated to a line of one of your user. You will
hear a prompt thanking you and your device should then reboot in the next few seconds. Once the device has

234 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.8. Administration 235

XiVO Documentation, Release 16.08

rebooted, it will then be properly configured for your user to use it. And also, if you update the device page, you’ll
see that the icon next to your device has now passed to green:

Resetting a Device

From the Device List in the Webi To remove a phone from XiVO or enable a device to be used for another
user there are two different possibilities :

• click on the reset to autoprov button on the web interface

The phone will restarts and display autoprov, ready to be used for another user.

From the User Form in the Webi

Device With one User Only Associated Edit the user associated to the device and put the device field to null.

• click on the Save button on the web interface

The phone doesn’t restart and the phone is in autoprov mode in the device list.

You can synchronize the device to reboot it.

Device with Several Users Associated Edit the primary user associated to the terminal (one with the line 1) and
put the device field to null.

• click on the Save button on the web interface

236 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

The primary line of the phone has been removed, so the device will lose its funckeys associated to primary user
but there others lines associated to the device will stay provisionned.

The phone doesn’t restart and the phone is in autoprov mode in the device list.

You can synchronize the device for reboot it.

From a Device

• Dial *guest (*48378) on the phone dialpad followed by xivo (9486) as a password

The phone restarts and display autoprov, ready to be used for another user.

Advanced Configuration

DHCP Integration

If your phones are getting their network configuration from your XiVO’s DHCP server, it’s possible to activate the
DHCP integration on the Configuration → Provisioning → General page.

What DHCP integration does is that, on every DHCP request made by one of your phones, the DHCP server sends
information about the request to provd, which can then use this information to update its device database.

This feature is useful for phones which lack information in their TFTP/HTTP requests. For example, without
DHCP integration, it’s impossible to extract model information for phones from the Cisco 7900 series. Without
the model information extracted, there’s chance your device won’t be automatically associated to the best plugin.

This feature can also be useful if your phones are not always getting the same IP addresses, for one reason or
another. Again, this is useful only for some phones, like the Cisco 7900; it has no effect for Aastra 6700.

Creating Custom Templates

Custom templates comes in handy when you have some really specific configuration to make on your telephony
devices.

Templates are handled on a per plugin basis. It’s not possible for a template to be shared by more than one plugin
since it’s a design limitation of the plugin system of provd.

Note: When you install a new plugin, templates are not migrated automatically, so you must manually copy them
from the old plugin directory to the new one. This does not apply for a plugin upgrade.

Let’s suppose we have installed the xivo-aastra-3.3.1-SP2 plugin and want to write some custom tem-
plates for it.

First thing to do is to go into the directory where the plugin is installed:

cd /var/lib/xivo-provd/plugins/xivo-aastra-3.3.1-SP2

Once you are there, you can see there’s quite a few files and directories:

tree
.
+-- common.py
+-- entry.py
+-- pkgs
| +-- pkgs.db
+-- plugin-info
+-- README
+-- templates
| +-- 6730i.tpl
| +-- 6731i.tpl

1.8. Administration 237

XiVO Documentation, Release 16.08

| +-- 6739i.tpl
| +-- 6753i.tpl
| +-- 6755i.tpl
| +-- 6757i.tpl
| +-- 9143i.tpl
| +-- 9480i.tpl
| +-- base.tpl
+-- var

+-- cache
+-- installed
+-- templates
+-- tftpboot

+-- Aastra
+-- aastra.cfg

The interesting directories are:

templates This is where the original templates lies. You should not edit these files directly but instead copy the
one you want to modify in the var/templates directory.

var/templates This is the directory where you put and edit your custom templates.

var/tftpboot This is where the configuration files lies once they have been generated from the templates. You
should look at them to confirm that your custom templates are giving you the result you are expecting.

Warning: When you uninstall a plugin, the plugin directory is removed altogether, including all the custom
templates.

A few things to know before writing your first custom template:

• templates use the Jinja2 template engine.

• when doing an include or an extend from a template, the file is first looked up in the var/templates
directory and then in the templates directory.

• device in autoprov mode are affected by templates, because from the point of view of provd, there’s no
difference between a device in autoprov mode or fully configured. This means there’s usually no need to
modify static files in var/tftpboot. And this is a bad idea since a plugin upgrade will override these
files.

Custom template for every devices
cp templates/base.tpl var/templates
vi var/templates/base.tpl
xivo-provd-cli -c 'devices.using_plugin("xivo-aastra-3.3.1-SP2").reconfigure()'

Once this is done, if you want to synchronize all the affected devices, use the following command:

xivo-provd-cli -c 'devices.using_plugin("xivo-aastra-3.3.1-SP2").synchronize()'

Custom template for a specific model Let’s supose we want to customize the template for our 6739i:

cp templates/6739i.tpl var/templates
vi var/templates/6739i.tpl
xivo-provd-cli -c 'devices.using_plugin("xivo-aastra-3.3.1-SP2").reconfigure()'

Custom template for a specific device To create a custom template for a specific device you have to
create a device-specific template named <device_specific_file_with_extension>.tpl in the
var/templates/ directory :

• for an Aastra phone, if you want to customize the file 00085D2EECFB.cfg you will have to create a
template file named 00085D2EECFB.cfg.tpl,

238 Chapter 1. Table of Contents

http://jinja.pocoo.org/docs/templates/

XiVO Documentation, Release 16.08

• for a Snom phone, if you want to customize the file 000413470411.xml you will have to create a
template file named 000413470411.xml.tpl,

• for a Polycom phone, if you want to customize the file 0004f2211c8b-user.cfg you will have to
create a template file named 0004f2211c8b-user.cfg.tpl,

• and so on.

Here, we want to customize the content of a device-specific file named 00085D2EECFB.cfg, we need to create
a template named 00085D2EECFB.cfg.tpl:

cp templates/6739i.tpl var/templates/00085D2EECFB.cfg.tpl
vi var/templates/00085D2EECFB.cfg.tpl
xivo-provd-cli -c 'devices.using_mac("00085D2EECFB").reconfigure()'

Note: The choice to use this syntax comes from the fact that provd supports devices that do not have MAC
addresses, namely softphones.

Also, some devices have more than one file (like Snom), so this way make it possible to customize more than 1
file.

The template to use as the base for a device specific template will vary depending on the need. Typically, the
model template will be a good choice, but it might not always be the case.

Changing the Plugin Used by a Device

From time to time, new firmwares are released by the devices manufacturer. This sometimes translate to a new
plugin being available for these devices.

When this happens, it almost always means the new plugin obsoletes the older one. The older plugin is then
considered “end-of-life”, and won’t receive any new updates nor be available for new installation.

Let’s suppose we have the old xivo-aastra-3.2.2.1136 plugin installed on our xivo and want to use the
newer xivo-aastra-3.3.1-SP2 plugin.

Both these plugins can be installed at the same time, and you can manually change the plugin used by a phone by
editing it via the Services → IPBX → Devices page.

If you are using custom templates in your old plugin, you should copy them to the new plugin and make sure that
they are still compatible.

Once you take the decision to migrate all your phones to the new plugin, you can use the following command:

xivo-provd-cli -c 'helpers.mass_update_devices_plugin("xivo-aastra-3.2.2.1136", "xivo-aastra-3.3.1-SP2")'

Or, if you also want to synchronize (i.e. reboot) them at the same time:

xivo-provd-cli -c 'helpers.mass_update_devices_plugin("xivo-aastra-3.2.2.1136", "xivo-aastra-3.3.1-SP2", synchronize=True)'

You can check that all went well by looking at the Services → IPBX → Devices page.

NAT

The provisioning server has partial support for environment where the telephony devices are behind a NAT equip-
ment.

By default, each time the provisioning server receives an HTTP/TFTP request from a device, it makes sure that
only one device has the source IP address of the request. This is not a desirable behaviour when the provisioning
server is used in a NAT environment, since in this case, it’s normal that more than 1 devices have the same source
IP address (from the point of view of the server).

1.8. Administration 239

http://en.wikipedia.org/wiki/NAT

XiVO Documentation, Release 16.08

If all your devices used on your XiVO are behind a NAT, you should disable this behaviour by setting the NAT
option to 1 via the Configuration → Provisioning → General page.

Enabling the NAT option will also improve the performance of the provisioning server in this scenario.

If you have many devices behind a NAT equipment, you should also check the security section to make sure the
IP address of your NAT equipment doesn’t get banned unintentionally.

Limitations

• You must only have phones of the following brands:

– Aastra

– Cisco SPA

– Yealink

• All your devices must be behind a NAT equipment (the devices may be grouped behind different NAT
equipments, not necessarily the same one)

• You must provision the devices via the Web interface, i.e. associate the devices from the user form. Using
the 6-digit provisioning code on the phone will produce unexpected results (i.e. the wrong device will be
provisioned)

For technical information about why other devices are not supported, you can look at this issue on the XiVO bug
tracker.

Security

By design, the auto-provisioning process is vulnerable to:

• Leakage of sensitive information: some files that are served by the provisioning server contains sensitive
information, e.g. SIP credentials that are used by SIP phones to make calls. Depending on your network
configuration and the amount of information an attacker has on your telephony ecosystem (phone vendor,
MAC address, etc.), he could retrieve the content of some files containing sensitive information.

• Denial-of-service attack: in its default configuration, each time the provisioning server identify a request
coming from a new device, it creates a new device object in its database. An attacker could spoof requests
to the provisioning server to create a huge amount of devices, creating a denial-of-service condition.

That said, starting from XiVO 16.08, XiVO adds Fail2ban support to the provisioning server to drastically lower
the likelihood of such attacks. Every time a request for a file potentially containing sensitive information is
requested, a log line is appended to the /var/log/xivo-provd-fail2ban.log file, which is monitored
by fail2ban. The same thing happens when a new device is automatically created by the provisioning server.

The fail2ban configuration for the provisioning server is located at /etc/fail2ban/jail.d/xivo.conf.
You may want to adjust the findtime / maxretry value if you have special requirements. In particular, if
you have many phones behind a NAT equipment, you’ll probably have to adjust these values, since every request
coming from your phones behind your NAT will appear to the provisioning server as coming from the same source
IP address, and this IP address will then be more likely to get banned promptly if you, for example, reboot all your
phones at the same time. Another solution would be to add your IP address to the list of ignored IP address of
fail2ban. See the fail2ban(1) man page for more information.

System Requirements XiVO 16.08 or later is required. You also need to use compatible xivo-provd plugins.
Here’s the list of official plugins which are compatible:

240 Chapter 1. Table of Contents

https://projects.xivo.io/issues/5107
http://www.fail2ban.org/

XiVO Documentation, Release 16.08

Plugin family Version
xivo-aastra >= 1.6
xivo-cisco-sccp >= 1.1
xivo-cisco-spa >= 1.0
xivo-digium >= 1.0
xivo-polycom >= 1.7
xivo-snom >= 1.6
xivo-yealink >= 1.26

Remote directory

If you have a phone provisioned with XiVO and its one of the supported ones, you’ll be able to search in your
XiVO directory and place call directly from your phone.

See the list of supported devices to know if a model supports the XiVO directory or not.

Configuration

For the remote directory to work on your phones, the first thing to do is to go to the Services → IPBX → (General
settings) Phonebook page.

You then have to add the range of IP addresses that will be allowed to access the directory. So if you know
that your phone’s IP addresses are all in the 192.168.1.0/24 subnet, just click on the small “+” icon and enter
“192.168.1.0/24”, then save.

Once this is done, on your phone, just click on the “remote directory” function key and you’ll be able to do a
search in the XiVO directory from it.

Jitsi

Jitsi (http://jitsi.org/) is an opensource softphone (previously SIP Communicator).

XiVO now support Jitsi sofphones provisioning. Here are the steps to follow :

Requirements

This how to needs :

1. Jitsi installed,

2. SIP line created

Add Jitsi plugin on XiVO

Open XiVO Web interface, and go to Configuration tab, Then chose Provisioning → Plugins menu, Install the
Jitsi plugin you want to use : e.g.:

xivo-jitsi-1

You can now launch your Jitsi softphone

Configuring Jitsi

1. Launch Jitsi,

2. If you don’t have any accounts configured Jitsi will launch a windows and you can click

1.8. Administration 241

http://jitsi.org/

XiVO Documentation, Release 16.08

3. Use online provisioning. Otherwise go to Tools -> Options -> Advanced -> Provisioing, Click on Enable
provisioning

4. Select Manually specify a provisioning URI,

5. Enter the folowing URI where <provd_ip> is the VoIP interface IP address of your XiVO and <provd_port>
is the provd port (default : 8667)

http://<provd_ip>:<provd_port>/jitsi?uuid=${uuid}

6. When done, quit Jitsi,

7. Launch Jitsi again,

• You should now be connected with in autoprov mode,

• You could see a new device in the devices list,

8. You can now provision the phones by typing the provisioning code (you get it in the Lines list),

9. Quit Jitsi again (configuration syncing is not available with the Jitsi plugin)

10. And launch Jitsi again : you should now be connected with you phone account

1.8.28 SCCP Configuration

Provisioning

To be able to provision SCCP phones you should :

• activate the DHCP Server,

• activate the DHCP Integration,

Then install a plugin for SCCP Phone: Configuration → Provisioning → Plugins

Fig. 1.66: Installing xivo cisco-sccp plugin

At this point you should have a fully functional DHCP server that provides IP address to your phones. Depending
on what type of CISCO phone you have, you need to install the plugin sccp-legacy, sccp-9.0.3 or both.

Note: Please refer to the Provisioning page for more information on how to install CISCO firmwares.

Once your plugin is installed, you’ll be able to edit which firmwares and locales you need. If you are unsure, you
can choose all without any problem.

Now if you connect your first SCCP phone, you should be able to see it in the device list.

Listing the detected devices: Services → IPBX → IPBX settings → Devices

When connecting a second SCCP phone, the device will be automatically detected as well.

SCCP General Settings

Review SCCP general settings: Services → IPBX → IPBX settings → SCCP general settings

242 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.67: Editing the xivo-cisco-sccp-legacy plugin

Fig. 1.68: Device list

Fig. 1.69: Device list

1.8. Administration 243

XiVO Documentation, Release 16.08

Fig. 1.70: SCCP general settings

User creation

The last step is to create a user with a SCCP line.

Creating a user with a SCCP line: Services → IPBX → IPBX settings → Users

Fig. 1.71: Add a new user

Fig. 1.72: Edit user informations

Before saving the newly configured user, you need to select the Lines menu and add a SCCP line. Now, you can
save your new user.

Congratulations ! Your SCCP phone is now ready to be called !

244 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.73: Add a line to a user

Function keys

With SCCP phones, the only function keys that can be configured are:

• Key: Only the order is important, not the number

• Type: Customized; Any other type doesn’t work

• Destination: Any valid extension

• Label: Any label

• Supervision: Enabled or Disabled

Direct Media

SCCP Phones support directmedia (direct RTP). In order for SCCP phones to use directmedia, one must enable the directmedia option in SCCP general settings:
Services → IPBX → IPBX settings → SCCP general settings

1.8. Administration 245

XiVO Documentation, Release 16.08

Features

Features Supported
Receive call Yes
Initiate call Yes
Hangup call Yes
Transfer call Yes
Congestion Signal Yes
Autoanswer (custom dialplan) Yes
Call forward Yes
Multi-instance per line Yes
Message waiting indication Yes
Music on hold Yes
Context per line Yes
Paging Yes
Direct RTP Yes
Redial Yes
Speed dial Yes
BLF (Supervision) Yes
Resync device configuration Yes
Do not disturb (DND) Yes
Group listen Yes
Caller ID Yes
Connected line ID Yes
Group pickup Yes
Auto-provisioning Not yet
Multi line Not yet
Codec selection Yes
NAT traversal Not yet
Type of Service (TOS) Manual

Telephone

Device type Supported Firmware version Timezone aware
7905 Should work
7906 Yes SCCP11.9-0-3S Yes
7911 Yes SCCP11.9-0-3S Yes
7912 Yes 8.0.4(080108A) No
7920 Yes 3.0.2 No
7921 Yes 1.4.5.3 Yes
7931 Yes SCCP31.9-0-3S Yes
7937 Testing
7940 Yes 8.1(2.0) No
7941 Yes SCCP41.9-0-3S Yes
7941GE Yes SCCP41.9-0-3S Yes
7942 Yes SCCP42.9-0-3S Yes
7945 Testing
7960 Yes 8.1(2.0) No
7961 Yes SCCP41.9-0-3S Yes
7962 Yes SCCP42.9-0-3S Yes
7965 Testing
7970 Testing
7975 Testing
CIPC Yes 2.1.2 Yes

Models not listed in the table above won’t be able to connect to Asterisk at all. Models listed as “Testing” are not

246 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

yet officially supported in XiVO: use them at your own risk.

The “Timezone aware” column indicates if the device supports the timezone tag in its configuration file, i.e. in
the file that the device request to the provisioning server when it boots. If you have devices that don’t support the
timezone tag and these devices are in a different timezone than the one of the XiVO, you can look at the issue
#5161 for a potential solution.

1.8.29 Schedules

Schedules are specific time frames that can be defined to open or close a service. Within schedules you may
specify opening days and hours or close days and hours.

A default destination as user, group ... can be defined when the schedule is in closed state.

Schedules can be applied to :

• Users

• Groups

• Inbound calls

• Outbound calls

• Queues

Creating Schedules

Fig. 1.74: Creating a schedule

A schedule is composed of a name, a timezone, one or more opening hours or days that you may setup using a
calendar widget, a destination to be used when the schedule state is closed.

With the calendar widget you may select months, days of month, days of week and opening time.

You may also optionaly select closed hours and destination to be applied when period is inside the main schedule.
For example, your main schedule is opened between 08h00 and 18h00, but you are closed between 12h00 and
14h00.

1.8. Administration 247

https://projects.xivo.io/issues/5161
https://projects.xivo.io/issues/5161

XiVO Documentation, Release 16.08

Fig. 1.75: Schedule calendar widget

Fig. 1.76: Schedule closed hours

248 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Using Schedule on Users

When you have a schedule associated to a user, if this user is called during a closed period, the caller will first hear
a prompt saying the call is being transferred before being actually redirected to the closed action of the schedule.

If you don’t want this prompt to be played, you can change the behaviour by:

1. editing the /etc/xivo/asterisk/xivo_globals.conf file and setting the
XIVO_FWD_SCHEDULE_OUT_ISDA to 1

2. reloading the asterisk dialplan with an asterisk -rx "dialplan reload".

1.8.30 Sound Files

Add Sounds Files

On a fresh install, only en_US and fr_FR sounds are installed. Canadian French and German are available too.

To install Canadian French sounds you have to execute the following command:

apt-get install asterisk-sounds-wav-fr-ca xivo-sounds-fr-ca

To install German sounds you have to execute the following command:

apt-get install asterisk-sounds-wav-de-de xivo-sounds-de-de

Now you may select the newly installed language for your users.

Convert Your Wav File

Asterisk will read natively WAV files encoded in wav 8kHz, 16 bits, mono.

The following command will return the encoding format of the <file>

$ file <file>
RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, mono 8000 Hz

The following command will re-encode the <input file> with the correct parameters for asterisk and write into the
<output file>:

sox <input file> -b 16 -c 1 -t wav <output file> rate -I 8000

1.8.31 Switchboard

This page describes the configuration needed to have a switchboard on your XiVO.

Overview

Switchboard functionality is available in the XiVO client. The goal of this page is to explain how to configure
your switchboard and how to use it.

The switchboard xlet and profile allow an operator to view incoming calls, answer them, put calls on hold, view
the calls on hold and pick up the calls on hold.

1.8. Administration 249

XiVO Documentation, Release 16.08

Limitations

Note: The shortcut keys of the switchboard do not work on the Mac version of the XiVO client.

Note: The enter shortcut to answer a call will not work if the focus is currently on a widget that will consume the
key press. ie: a text field, a drop down

Note: Attended transfers to the switchboard cannot be managed with the switchboard xlets depending on the
moment at which the call was completed.

Table of Contents

Switchboard Configuration

Be sure to read the limitations before configuring a switchboard.

Server configuration

Quick Summary In order to configure a switchboard on your XiVO, you need to:

• Create a queue for your switchboard

• Create a queue for your switchboard’s calls on hold

• Create the users that will be operators

• Activate the switchboard option for your phone

• Create an agent for your user

• Assign the incoming calls to the switchboard queue

• For each operator, add a function key for logging in or logging out from the switchboard queue.

• Set “no answer” destinations on the switchboard queue

Supported Devices The supported phones for the switchboard are:

Brand Model XiVO version Plugin version
Aastra 6755i >= 14.07 >= xivo-aastra-3.3.1-SP2, v1.0
Aastra 6757i >= 14.07 >= xivo-aastra-3.3.1-SP2, v1.0
Aastra 6735i >= 14.07 >= xivo-aastra-3.3.1-SP2, v1.2
Aastra 6737i >= 14.07 >= xivo-aastra-3.3.1-SP2, v1.2
Polycom VVX 400 >= 15.11 >= xivo-polycom-5.3.0, v1.3
Polycom VVX 410 >= 15.11 >= xivo-polycom-5.3.0, v1.3
Snom 720 >= 14.14 >= xivo-snom-8.7.3.25.5, v1.0
Snom D725 >= 14.14 >= xivo-snom-8.7.5.17, v1.4
Yealink T46G >= 15.01 >= xivo-yealink-72.0, v1.22.1

Create a Queue for Your Switchboard All calls to the switchboard will first be distributed to a switchboard
queue.

To create this queue, go to Services → Call center → Queues and click the add button.

The following configuration is mandatory

250 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• The General → Name field has to be __switchboard

• The General → Ring strategy field has to be Ring all

• The General → Preprocess subroutine field has to be xivo_subr_switchboard

• The Application → Allow caller to hang up call option has to be enabled

• The Application → Allow callee to transfer the call option has to be enabled

• The Advanced → Member reachability timeout option has to be disabled

• The Advanced → Time before retrying a call to a member option has to be 1 second

• The Advanced → Delay before reassigning a call option has to be disabled

• The Advanced → Call a member already on option has to be disabled

• The Advanced → Autopause agents option has to be No

Other important fields

• The General → Display name field is the name displayed in the XiVO client xlets and in the statistics

• The General → Number field is the number that will be used to reach the switchboard internally (typically
9)

Create a Queue for Your Switchboard on Hold The switchboard uses a queue to track its calls on hold.

To create this queue, go to Services → Call center → Queues and click the add button.

The following configuration is mandatory

• The General → Name field has to be __switchboard_hold

• The General → Number field has to be a valid number in a context reachable by the switchboard

Other important fields

• The General → Display name field is the name displayed in the XiVO client xlets and in the statistics

Warning: This queue MUST have NO members

Create the Users that Will be Operators Each operator needs to have a user configured with a line. The XiVO
client profile has to be set to Switchboard.

The following configuration is mandatory for switchboard users

• The General → First name field has to be set

• The General → Enable XiVO Client option has to be enabled

1.8. Administration 251

XiVO Documentation, Release 16.08

• The General → Login field has to be set

• The General → Password field has to be set

• The General → Profile field has to be set to Switchboard

• The Lines → Number field has to have a valid extension

• The Lines → Device field has to be a supported device

• The Services → Enable call transfer option has to be enabled

• The Services → Enable supervision option has to be enabled

Activate the Switchboard Option for your Phone The switchboard option must be activated on the phone. It’s
possible to activate this option only on supported phones and plugins.

• Edit device associated to your user in Services → Devices

• Check the switchboard checkbox and save

• Synchronize your phone to apply the changes

Polycom Phones To be able to use a Polycom phone for the switchboard, the XiVO must be able to do HTTP
requests to the phone. This might be problematic if there’s a NAT between your XiVO and your phone.

It’s possible to configure the Polycom switchboard via the configuration files of xivo-ctid. The following options
are available:

252 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

switchboard_polycom:
username: xivo_switchboard
password: xivo_switchboard
answer_delay: 0.5

You will also need to change the XML API username/password by creating a custom template for your phone.

Snom Phones When using a Snom switchboard, you must not configure a function key on position 1.

To be able to use a Snom phone for the switchboard, the XiVO must be able to do HTTP requests to the
phone. This might be problematic if there’s a NAT between your XiVO and your phone. The following
command should work from your XiVO’s bash command line wget http://guest:guest@<phone IP
address>/command.htm?key=SPEAKER. If this command does not activate the phone’s speaker, your net-
work configuration will have to be fixed before you can use the Snom switchboard.

It’s possible to configure the Snom switchboard via the configuration files of xivo-ctid. The following options are
available:

switchboard_snom:
username: guest
password: guest
answer_delay: 0.5

You have to change the username and password option if you have changed the administrator username or admin-
istrator password for your phone in Configuration → Provisioning → Template Device.

Create an Agent for the Operator Each operator needs to have an associated agent.

Warning: Each agent MUST ONLY be a member of the Switchboard queue

To create an agent:

• Go to Services → Call center → Agents

• Click on the group default

• Click on the Add button

• Associate the user to the agent in the Users tab

• Assign the Agent to the Switchboard Queue (and ONLY to the Switchboard queue)

Send Incoming Calls to the Switchboard Queue Incoming calls must be sent to the Switchboard queue to be
distributed to the operators. To do this, we have to change the destination of our incoming call for the switchboard
queue.

In this example, we associate our incoming call (DID 444) to our Switchboard queue:

1.8. Administration 253

XiVO Documentation, Release 16.08

254 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Set “No Answer” Destinations on the Switchboard Queue When there are no operators available to answer a
call, “No Answer” destinations should be used to redirect calls towards another destination.

You also need to set the timeout of the Switchboard queue to know when calls will be redirected.

The reachability timeout must not be disabled nor be too short.

The time before retrying a call to a member should be as low as possible (1 second).

In this example we redirect “No Answer”, “Busy” and “Congestion” calls to the everyone group and “Fail” calls
to the guardian user.

You can also choose to redirect all the calls to another user or a voice mail.

XiVO Client configuration

1.8. Administration 255

XiVO Documentation, Release 16.08

Directory xlet The transfer destination is chosen in the Directory xlet. You must follow the Directory Xlet
section to be able to use it.

Configuration for multiple switchboards The above documentation can be used for multiple switchboards
on the same XiVO by replacing the __switchboard and __switchboard_hold queues name and configuring the
operators XiVO client accordingly in the XiVO Client → Configure → Functions → Switchboard window.

All switchboard queues should be added to the xivo-ctid configuration. New queues can be added by adding a
file in /etc/xivo-ctid/conf.d. For example, the following content should be used for a new switchboard
queue names __switchboard_two and an hold queue names __switchboard_hold_two.

{"switchboard_queues": {"__switchboard_two": true},
"switchboard_hold_queues": {"__switchboard_hold_two": true}}

Switchboard Usage

Warning: The switchboard configuration must be completed before using the switchboard. This includes :
• Device, User, Agent and Queues configuration (see above),
• Directory xlet configuration (see Directory Xlet)

If it’s not the case, the user must disconnect his XiVO client and reconnect.

Be sure to read the limitations before using the switchboard.

The XiVO Client Switchboard Profile When the user connects with his XiVO Client, he gets the Switchboard
profile.

256 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.8. Administration 257

XiVO Documentation, Release 16.08

1. Current Call frame

2. Answer button

3. Call button

4. Blind transfer button

5. Attended transfer button

6. Hold button

7. Hangup button

8. Incoming Calls list

9. Waiting Calls list

10. Directory Xlet

11. Dial Xlet

Note: If you don’t see the Switchboard Xlet, right-click on the grey bar at the right of the Help menu and check
Switchboard:

The operator can login his agent using a function key or an extension to start receiving calls.

Call flow

Answering an incoming call When the switchboard receives a call, the new call is added to the Incoming Calls
list on the left and the phone starts ringing. The user can answer this call by:

• clicking on any call in the list

• clicking the Answer button

• pressing the Enter key

Note: The XiVO Client must be the active window for the keyboard shortcuts to be handled

The operator can select which call to answer by:

• clicking directly on the incoming call

• pressing F6 to select the incoming calls frame and pressing the up and down arrow keys

Selecting a call to answer while talking will not answer the call.

Once the call has been answered, it is removed from the incoming calls list and displayed in the Current Call
frame.

258 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Making a Call The switchboard operator can do the following operations:

• Press the Call button or press F3

• Search for the call destination in the directory xlet

• Press to confirm the selection and start the call

Hanging Up a Call The switchboard operator can hang up its current call by either:

• Clicking the Hangup button

• Pressing the F8 key

If the operator has placed a new call via the Directory or Dial xlet and that call has not yet been answered, he can
cancel it in the same way.

Distributing a call Once the call has been answered and placed in the current call frame, the operator has 3
choices:

• transfer the call to another user

– using the Blind transfer button or the F4 key.

– using the Attended transfer button or the F5 key

• put the call on hold using the Hold button or the F7 key

• end the call using the Hangup button or the F8 key.

Transferring a call Transfer buttons allow the operator to select towards which destination he wishes to transfer
the call. This is made through the Directory xlet. For defails about the xlet Directory usage and configuration see
Directory Xlet.

Once the destination name has been entered, press Enter. If multiple destinations are displayed, you can choose
by:

• double-clicking on the destination

• using Up/Down arrows then:

– pressing Enter

– pressing the transfer button again

Blind transfers are straightforward: once the call is transferred, the operator is free to manage other calls.

Attended transfers are a bit more complicated: the operator needs to wait for the transfer destination to answer
before completing the transfer.

In this example, the operator is currently asking Bernard Marx if he can transfer Alice Wonderland to him.

1. Complete transfer button

2. Cancel transfer button

3. Transfer destination filtering field (xlet Directory)

4. Transfer destination list (xlet Directory)

Once the destination has answered, you can:

• cancel the transfer with F8 key

• complete the transfer with F5 key

Note: The operator can not complete an attended transfer while the transfer destination is ringing. In this case,
the operator must cancel the attended transfer and use the Blind transfer action.

1.8. Administration 259

XiVO Documentation, Release 16.08

Putting a call on hold If the user places the call on hold, it will be removed from the Current call frame and
displayed in the Waiting calls list. The time counter shows how long the call has been waiting, thus it will be reset
each time the call returns in the Waiting calls list. The calls are ordered from the oldest to the newest.

Retrieving a call on hold Once a call has been placed on hold, the operator will most certainly want to retrieve
that call later to distribute it to another destination.

To retrieve a call on hold:

• click the desired call in the Waiting calls list

• with the keyboard:

– move the focus to the Waiting calls list (F9 key)

– choose the desired call with the arrow keys

– press the Enter key.

Once a call has been retrieved from the Waiting calls list, it is moved back into the Current Call frame, ready to
be distributed.

Switchboard Statistics

Limitations
Note: Statistics are produced by xivo-ctid. If a call is received when xivo-ctid is stopped, no statistics will be
produced for that call.

Note: Statistics are only generated for calls answered in XiVO 16.03.

Note: Statistics are only available for existing switchboard queues, i.e. deleting a queue will also delete the
associated statistics.

260 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Daily Statistics Switchboard statistics can be retrieved in CSV format via the web interface in Services →
Statistics → Switchboard → Statistics.

• Start date: when empty, the result will contain statistics from the beginning

• End date: when empty, the result will contain statistics until the current time

Note: Switchboard statistics older than a year are automatically removed. See Purge Logs for more details.

Report The generated CSV report includes the following columns:

• date: The date at which the calls were received

• entered: The number of calls to the switchboard for the given date excluding calls when the switchboard
was closed (e.g. with a schedule)

• answered: The number of calls that have been answered by the operator and then transferred or completed
by the operator

• transferred: The number of calls that have been transferred by the switchboard operator to another destina-
tion

• abandoned: The number of calls that have been abandoned in the switchboard queue or while waiting in the
hold queue

• forwarded: The number of calls that have been forwarded to another destination:

– a call reaching a full queue

– a call waiting until the max ring time is reached

– a call forwarded because of a diversion rule

– a call forwarded because of a leave empty condition

• waiting_time_average: The average time spent in the switchboard and hold queue for all calls that entered
the switchboard

Events Switchboard statistic events are published on the bus to be consumed by collectd.

Configuration In order to process these events, you need:

• collectd installed on your XiVO: apt-get install collectd

• In /etc/collectd/collectd.conf.d/amqp.conf, configure collectd to read events from the bus
(RabbitMQ):

LoadPlugin amqp

<Plugin "amqp">
<Subscribe "xivo">

Host "127.0.0.1"
Port "5672"
VHost "/"
User "guest"
Password "guest"
Exchange "collectd"
ExchangeType "topic"

1.8. Administration 261

XiVO Documentation, Release 16.08

RoutingKey "collectd.#"
</Subscribe>

</Plugin>

• another service receiving events from collectd, e.g. logstash, graphite, another collectd.

Event description The collectd events have the following attributes:

• host: the UUID of the XiVO.

• plugin: switchboard

• plugin_instance: the name (not the display name) of the queue for incoming calls of the switchboard.

• type: counter or gauge.

• type_instance: the following values.

entered This event is produced when a call enters the switchboard on an open schedule. Calls that did not enter
the queue, if the queue was full for example, will also generate an entered event.

abandoned This event is produced when the called hangs up while waiting in the incoming queue or in the hold
queue.

transferred This event is produced when a call is transferred from the switchboard by the operator. For attended
transfers, the event is sent when the transfer is completed.

forwarded This event is produced when a call is redirected to another destination under certain conditions. This
include:

• When the queue is full

• When the queue timeout is reached

• When no agent are logged with a join empty configuration

• When a divertion occured

completed This event is produced when a call was answered by the operator without being transferred to another
destination.

wait_time This event is produced when a call is completed, its value is the sum of all times spent in the hold
queue and the time spent in the incoming queue before being answered.

1.8.32 Users

Users Configuration.

User Import and Export

CSV Import

Users can be imported and associated to other resources by use of a CSV file. CSV Importation can be used
in situations where you need to modify many users at the same in an efficient manner, or for migrating users
from one system to another. A CSV file can be created and edited by spreadsheet tools such as Excel, LibreOf-
fice/OpenOffice Calc, etc.

CSV file The first line of a CSV file contains a list of field names (also sometimes called “columns”). Each new
line afterwards are users to import. CSV data must respect the following conditions:

• Files must be encoded in UTF-8

• Fields must be separated with a ,

262 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Fields can be optionally quoted with a "

• Double-quotes can be escaped by writing them twice (e.g. Robert ""Bob"" Jenkins)

• Empty fields or headers that are not defined will be considered null.

• Fields of type bool must be either 0 for false, or 1 for true.

• Fields of type int must be a positive number

In the following tables, columns have been grouped according to their resource. Each resource is created and
associated to its user when all required fields for that resource are present.

User

Field Type Re-
quired

Values Description

entity_id int Yes Entity ID (Defined in menu Configuration →
Management → Entities)

firstname string Yes User’s firstname
lastname string User’s lastname
email string User’s email
language string de_DE, en_US, es_ES,

fr_FR, fr_CA
User’s language

mo-
bile_phone_number

string Mobile phone number

out-
ging_caller_id

string Customize outgoing caller id for this user

enabled bool Enable/Disable the user
supervi-
sion_enabled

bool Enable/Disable supervision

call_transfer_enabledbool Enable/Disable call transfers
simultane-
ous_calls

int Number of calls a user can have on his phone
simultaneously

ring_seconds int Must be a multiple of 5 Number of seconds a call will ring before
ending

call_permission_passwordstring Overwrite all passwords set in call
permissions associated to the user

CTI Profile

Field Type Required Val-
ues

Description

cti_profile_enabledbool No Activates the XiVO Client account for this user
username string Yes, if profile

enabled
XiVO Client username

password string Yes, if profile
enabled

XiVO Client password

cti_profile_name string Yes, if profile
enabled

XiVO Client profile (Defined in menu Services → CTI
server → Profiles)

Phone

Field Type Re-
quired

Val-
ues

Description

exten string Yes Number for calling the user. The number must be inside the range of
acceptable numbers defined for the context

context string Yes Context
line_protocolstring Yes sip,

sccp
Line protocol

sip_usernamestring SIP username
sip_secret string SIP secret

1.8. Administration 263

XiVO Documentation, Release 16.08

Incoming call

Field Type Re-
quired

Val-
ues

Description

in-
call_exten

stringYes Number for calling the user from an incoming call (i.e outside of XiVO).
The number must be inside the range of acceptable numbers defined for the
context.

in-
call_context

stringYes context used for calls coming from outside of XiVO

in-
call_ring_seconds

int Number of seconds a call will ring before ending

Voicemail

Field Type Re-
quired

Values Description

voicemail_name string Yes Voicemail name
voicemail_number string Yes Voicemail number
voicemail_context string Yes Voicemail context
voicemail_password string A sequence of

digits or #
Voicemail password

voicemail_email string Email for sending notifications of new
messages

voice-
mail_attach_audio

bool Enable/Disable attaching audio files to
email message

voice-
mail_delete_messages

bool Enable/Disable deleting message after
notification is sent

voice-
mail_ask_password

bool Enable/Disable password checking

Call permissions

Field Type Re-
quired

Values Description

call_permissions string list separated by
semicolons (;)

Names of the call permissions to assign to
the user

Importing a file Once your file is ready, you can import it via Services → IPBX → IPBX settings → Users. At
the top of the page there is a plus button. A submenu will appear when the mouse is on top. Click on Import a file.

Fig. 1.77: Import Users

Examples The following example defines 3 users who each have a phone number. The first 2 users have a SIP
line, where as the last one uses SCCP:

entity_id,firstname,lastname,exten,context,line_protocol
1,John,Doe,1000,default,sip
1,George,Clinton,1001,default,sip
1,Bill,Bush,1002,default,sccp

The following example imports a user with a phone number and a voicemail:

264 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

entity_id,firstname,lastname,exten,context,line_protocol,voicemail_name,voicemail_number,voicemail_context
1,John,Doe,1000,default,sip,Voicemail for John Doe,1000,default

The following exmple imports a user with both an internal and external phone number (e.g. incoming call):

entity_id,firstname,lastname,exten,context,line_protocol,incall_exten,incall_context
1,John,Doe,1000,default,sip,2050,from-extern

CSV Update

The field list for an update is the same as for an import with the addition of the column uuid, which is mandatory.
For each line in the CSV file, the updater goes through the following steps:

1. Find the user, using the uuid

2. For each resource (line, voicemail, extension, etc) find out if it already exists.

3. If an existing resource was found, associate it with the user. Otherwise, create it.

4. Update all remaining fields

The following restrictions must also be respected during update:

• Columns that are not included in the CSV header will not be updated.

• A field that is empty (i.e, “”) will be converted to NULL, which will unset the value.

• A line’s protocol cannot be changed (i.e you cannot go from “sip” to “sccp” or vice-versa).

• An incall cannot be updated if the user has more than one incall associated.

Updating is done through the same menu as importing (Services → IPBX → IPBX settings → Users). A submenu
will appear when the mouse is on top. Click on Update from file in the submenu.

Fig. 1.78: Services → IPBX → IPBX settings → Users → Update from file

CSV Export

CSV exports can be used as a scaffold for updating users, or as a means of importing users into another system.
An export will generate a CSV file with the same list of columns as an import, with the addition of uuid and
provisioning_code.

Exports are done through the same menu as importing (Services → IPBX → IPBX settings → Users). Click on
Export to CSV in the submenu. You will be asked to download a file.

Function keys

Function keys can be configured to customize the user’s phone keys. Key types are pre-defined and can be browsed
through the Type drop-down list. The Supervision field allows the key to be supervised. A supervised key will
light up when enabled. In most cases, a user cannot add multiple times exactly the same function key (example
: two user function keys pointing to the same user). Adding the same function key multiple times can lead to
undefined behavior and generally will delete one of the two function keys.

1.8. Administration 265

XiVO Documentation, Release 16.08

Fig. 1.79: Services → IPBX → IPBX settings → Users → Export to CSV

Warning: SCCP device only supports type “Customized”.

For User keys, start to key in the user name in destination, XiVO will try to complete with the corresponding user.

If the forward unconditional function key is used with no destination the user will be prompted when the user
presses the function key and the BLF will monitor ALL unconditional forward for this user.

Extensions

*3 (online call recording)

To enable online call recording, you must check the “Enable online call recording” box in the user form.

Fig. 1.80: Users Services

When this option is activated, the user can press *3 during a conversation to start/stop online call recording. The
recorded file will be available in the monitor directory of the Services → IPBX → Audio files menu.

266 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

*26 (call recording)

You can enable/disable the recording of all calls for a user in 2 different way:

1. By checking the “Call recording” box of the user form.

Fig. 1.81: Users Services

2. By using the extension *26 from your phone (the “call recording” option must be activated in Services →
IPBX → Extensions).

When this option is activated, all calls made to or made by the user will be recorded in the monitor directory of
the Services → IPBX → Audio files menu.

1.8.33 Voicemail

Voicemail Configuration.

General Configuration

The global voicemail configuration is located under Services → IPBX → General Settings → Voicemails.

Adding voicemails

There are 2 ways to add a voicemail:

• Using Services → IPBX → IPBX settings → Voicemails

• Using the user’s configuration

Using Services → IPBX → IPBX settings → Voicemails

New voicemails can be added using the + button.

Fig. 1.82: Add voicemails from voicemail menu

Once your voicemail is configured, you have to edit the user configuration and search the voicemail previously
created and then associate it to your user.

1.8. Administration 267

XiVO Documentation, Release 16.08

Fig. 1.83: Search for a voicemail in the user’s configuration

Using the user’s configuration

The other way is to add the voicemail from user’s configuration in the ‘voicemail’ tab by

1. Clicking the + button

2. Filling the voicemail form

3. Saving

Fig. 1.84: Add a voicemail from the user’s configuration

Note: The user’s language must be set in the general tab

Disabling a voicemail

You can disable a user’s voicemail by un-checking the ‘Enable voicemail’ option on the Voicemail tab from user’s
configuration.

Deleting a voicemail

Delete voicemail is done on Services → IBX → IPBX settings → Voicemails or from the user’s voicemail tab.

268 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.85: Deactivate user’s voicemail

Note:

• Deleting a voicemail is irreversible. It deletes all messages associated with that voicemail.

• If the voicemail contains messages, the message waiting indication on the phone will not be deactivated
until the next phone reboot.

Disable password checking

Unchecking the option Ask password allows you to skip password checking for the voicemail only when it is
consulted from an internal context.

• when calling the voicemail with *98

• when calling the voicemail with *99<voicemail number>

Warning: If the the *99 extension is enabled and a user does not have a password on its voicemail, anyone
from the same context will be able to listen to its messages, change its password and greeting messages.

However, the password will be asked when the voicemail is consulted through an incoming call. For instance, let’s
consider the following incoming call:

With such a configuration, when calling this incoming call from the outside, we will be asked for:

• the voicemail number we want to consult

• the voicemail password, even if the “Disable password checking option” is activated

And then, we will be granted access to the voicemail.

Take note that the second “context” field contains the context of the voicemail. Voicemails of other contexts will
not be accessible through this incoming call.

Warning: For security reasons, such an incoming call should be avoided if a voicemail in the given context
has no password.

1.8. Administration 269

XiVO Documentation, Release 16.08

Advanced configuration

Remote xivo-confd

If xivo-confd is on a remote host, xivo-confd-client configuration will be required to be able to change the voicemail
passwords using a phone.

This configuration should be done:

mkdir -p /etc/systemd/system/asterisk.service.d
cat >/etc/systemd/system/asterisk.service.d/remote-confd-voicemail.conf <<EOF
[Service]
Environment=CONFD_HOST=localhost
Environment=CONFD_PORT=9486
Environment=CONFD_HTTPS=true
Environment=CONFD_USERNAME=<username>
Environment=CONFD_PASSWORD=<password>
EOF
systemctl daemon-reload

1.8.34 Web Services Access

You may configure Web Services / REST API permissions in Configuration → Management → Web Services
Access.

Web services access may have two different meanings:

• Who may access REST APIs of various XiVO daemons, and which resources in those REST APIs?

• Who may access PHP web services under https://xivo.example.com/xivo/configuration/json.php/*?

REST API access and permissions

Those REST API interfaces are documented on http://api.xivo.io. They all require an authorization token, obtained
by giving valid credentials to the REST API of xivo-auth. The relevant settings are:

• Login/Password: the xivo-auth credentials (for the xivo-auth backend xivo_service)

• ACL: The list of authorized REST API resources. See REST API Permissions.

Unlike PHP web services, there is no host-based authorization, so the Host setting is not relevant.

A few REST API access are automatically generated during the installation of XiVO, so that XiVO services may
authenticate each other.

270 Chapter 1. Table of Contents

http://api.xivo.io

XiVO Documentation, Release 16.08

You will probably only need to create such a REST API access when you want another non-XiVO service to
communicate with XiVO via REST API.

PHP web services

Warning: DEPRECATED

Those web services are deprecated. There is no documentation about their usage, and the goal is to remove them.

They are still protected with HTTP authentication, requiring a login and password. The relevant settings are:

• Login/Password: the HTTP authentication credentials

• Host: the authorized hosts that are allowed to make HTTP requests:

– Empty value: HTTP authentication

– Non-empty value: no HTTP authentication, all requests coming from this host will be accepted. Valid
hosts may be: a hostname, an IP address, a CIDR block.

There is no fine-grained permissions: either the user has access to every PHP web services, or none.

xivo-confd

Warning: DEPRECATED

There is also a special case for authentication with xivo-confd. See REST API for more details.

1.9 Contact Center

In XiVO, the contact center is implemented to fulfill the following objectives :

• Call routing

Includes basic call distribution using call queues and skills-based routing

• Agent and Supervisor workstation.

Provides the ability to execute contact center actions such as: agent login, agent logout and to receive real
time statistics regarding contact center status

• Statistics reporting

Provides contact center management reporting on contact center activities

• Advanced functionalities

Call recording

• Screen Pop-up

1.9.1 Agents

Introduction

A call center agent is the person who handles incoming or outgoing customer calls for a business. A
call center agent might handle account inquiries, customer complaints or support issues. Other names
for a call center agent include customer service representative (CSR), telephone sales or service
representative (TSR), attendant, associate, operator, account executive or team member.

1.9. Contact Center 271

XiVO Documentation, Release 16.08

—SearchCRM

In this respect, agents in XiVO have no fixed line and can login from any registered device.

Getting Started

• Create a user with a SIP line and a provisioned device.

• Create agents.

• Create a queue adding created agent as member of queue.

Creating agents

Service > Call center > Agents > General

These settings are specific for a given agent.

Service > Call center > Agents > Users

These settings are specific for a given agent.

Service > Call center > Agents > Queues

These settings are specific for a given agent.

Service > Call center > Agents > Advanced

These settings are specific for a given agent.

Service > IPBX > General settings > Advanced > Agent

These settings are global for all agents.

1.9.2 Queues

Call queues are used to distribute calls to the agents subscribed to the queue. Queues are managed on the Services
→ Call Center → Queues page.

A queue can be configured with the following options:

• Name: used as an unique id, cannot be general

• Display name: Displayed on the supervisor screen

• On-Hold music: The music the caller will hear. The music is played when waiting and when the call is on
hold.

A ring strategy defines how queue members are called when a call enters the queue. A queue can use one of the
following ring strategies:

• Linear: For each call, in the same order, starting from the same member

– For agents: In login order

– For static members: In definition order

• Least recent: call the member who least recently hung up a call

272 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.86: Services → Call Center → Queues → Add

• Fewest calls: call the member with the fewest completed calls

• Round robin memory: call the “next” member after the one who answered last

• Random: call a member at random

• Weight random: same as random, but taking the member penalty into account

• Ring all: call all members at the same time

Warning: When editing a queue, you can’t change the ring strategy to linear. This
is due to an asterisk limitation. Unfortunately, if you want to change the ring strategy
of a queue to linear, you’ll have to delete it first and then create a new queue with the
right strategy.

Note: When an agent is a member of many queues the order of call distribution between multiple
queues is nondeterministic and cannot be configured.

Timers

You may control how long a call will stay in a queue using different timers:

• Member reachabillity time out (Advanced tab): Maximum number of seconds a call will ring on an agent’s
phone. If a call is not answered within this time, the call will be forwarded to another agent.

• Time before retrying a call to a member (Advanced tab): Used once a call has reached the “Member reach-
ability time out”. The call will be put on hold for the number of seconds alloted before being redirected to
another agent.

• Ringing time (Application tab): The total time the call will stay in the queue.

• Timeout priority (Application tab): Determines which timeout to use before ending a call. When set to
“configuration”, the call will use the “Member reachability time out”. When set to “dialplan”, the call will
use the “Ringing time”.

No Answer

Calls can be diverted on no answer:

• No answer: The call reached the “Ringing time” in Application tab and no agent answered the call

• Congestion: The number of calls waiting has reached the “Maximum number of people allowed to wait”
limit specified on the advanced tab

1.9. Contact Center 273

XiVO Documentation, Release 16.08

274 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Fail: No agent was available to answer the call when the call entered the queue (“Join an empty queue”
condition on the advanced tab) or the call was queued and no agents were available to answer (“Remove
callers if there are no agents” on the advanced tab)

Diversions

Diversions can be used to redirect calls to another destination when a queue is very busy. Calls are redirected
using one of the two following scenarios:

The diversion check is done only once per call, before the preprocess subroutine is executed and before the call
enters the queue.

In the following sections, a waiting call is a call that has entered the queue but has not yet been answered by a
queue member.

Estimated Wait Time Overrun

When this scenario is used, the administrator can set a destination for calls to be sent to when the estimated waiting
time is over the threshold.

Note that if a new call arrives when there are no waiting calls in the queue, the call will always be allowed to enter
the queue.

Note:

• this estimated waiting time is computed from the actual hold time of all answered calls in the queue (since
last asterisk restart) according to an exponential smoothing formula

• the estimated waiting time of a queue is updated only when a queue member answers a call.

Number of Waiting Calls per Logged-In Agent Overrun

When this scenario is used, the administrator can set a destination for calls to be sent to when the number of
waiting calls per logged-in agent is over the threshold.

The number of waiting calls includes the call for which the check is currently being performed.

The number of logged-in agents is the sum of user members and currently logged-in agent members. An agent only
needs to be logged in and a member of the queue to participate towards the count of logged-in agents, regardless
of whether he is available, on call, on pause or on wrapup.

1.9. Contact Center 275

https://en.wikipedia.org/wiki/Exponential_smoothing

XiVO Documentation, Release 16.08

The maximum number of waiting calls per logged-in agent can have a fractional part.

Here are a few examples:

Maximum number of waiting calls per logged-in agent: 1
Current number of waiting calls: 2
Current number of logged-in agents: 2
Number of waiting calls per logged-in agent when a new call arrives: 3 / 2 = 1.5
Call will be redirected

Maximum number of waiting calls per logged-in agent: 0.5
Number of waiting calls: 5
Number of logged-in agents: 12
Number of waiting calls per logged-in agent when a new call arrives: 6 / 12 = 0.5
Call will not be redirected

Note that if a new call arrives when there are no waiting calls in the queue, the call will always be allowed to enter
the queue. For example, in the following scenario:

Maximum number of waiting calls per logged-in agent: 0.5
Current number of waiting calls: 0
Current number of logged-in agents: 1
Number of waiting calls per logged-in agent when a new call arrives: 1 / 1 = 1

Even if the number of waiting calls per logged-in agent (1) is greater than the maximum (0.5), the call will still be
accepted since there are currently no waiting calls.

1.9.3 Supervision

Introduction

Allows a contact center supervisor to monitor contact center activities such as:

• Monitoring real time information from call queues

• Agent activities per call queues

• Agent detailed activities

XiVO client as a Supervision Platform

Configuration

A supervisor profile defined in Service → CTI Server → Profiles menu usually contains the following Xlets :

• Identity

• Queues

• Queue members

• Queues (entries detail)

• Agents (list)

• Agents (detail)

Note You may also see the Agent Status Dashboard

Supervision Panel

• Clicking on a queue’s name in the queue list will display the agent list in the xlet Queue Members and show
waiting calls in the Calls of a Queue xlet.

276 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Clicking on an agent’s name in the agent list will display information on the agent in the Agent Details xlet

• Clicking on the + icon in the Agent Details xlet will display information about the selected queue in the
Calls of a Queue and Queue Members xlets.

Queue List General information

The queue list is a dashboard displaying queue statistics and real-time counters for each queue configured on the
XiVO.

Real-time Columns

The data of following columns display real-time information.

Queues queue name and number if configured to be displayed

Waiting calls The number of calls currently waiting for an agent in this queue. The background color can change
depending of the configured thresholds

EWT Estimated waiting time

Longest wait The longest waiting time for currently waiting calls. The background color can change depending
of the configured thresholds

Talking The number of agents currently in conversation in the queue. This column is set to 0 when the queue has
just been created and no members have been added.

Logged The number of logged agents in the queue. This column is set to “N/A” when the queue has just been
created and no members have been added.

Available The number of available agents ready to take a call in the queue. This column is set to N/A when the
queue has just been created and no members have been added.

Last Period Columns

The data of following columns are based on statistics fetched from a fixed-width window of time, e.g. the last 60
minutes or the last 10 minutes. See below to configure the width of the window for each queue.

Received The number of calls received in this queue during the configured statistical window

Answered The number of calls answered in this queue during the configured statistical window

Abandoned The number of calls abandoned in this queue during the configured statistical window

Mean waiting time The mean wait time in the statistical time window, in mm:ss If no calls are received, “-” is
displayed

1.9. Contact Center 277

XiVO Documentation, Release 16.08

Max waiting time The longest wait time in the statistical time window, in mm:ss If no calls are received, “-” is
displayed

Efficiency Answered calls over received calls during the configured statistical window (unanswered calls that are
still waiting are not taken into account). If no calls are received, “-” is displayed

QOS Percentage of calls taken within X seconds over answered calls during the configured statistical window. If
no calls are received, “-” is displayed

Counter availability

When the XiVO client is started, “na” is diplayed for counters that have not been initialized.

When the XiVO client is restarted, the counters are always displayed and calculated as if the application was not
restarted. When the server is restarted, counters are reinitialized.

Enabling the xlet

The xlet can be added to any CTI profile from the web interface.

Configuration

Some values can be configured for the xlet. The statistic fetch timer can be set in the CTI profile preferences. This
option is expressed in seconds and the default is 30 seconds.

The statistical period can be configured through the XiVO client once logged in by right-clicking on the Queue’s
name in the Queues xlet. For each queue, you can configure the following information:

• Qos: maximum wait time for a call, in seconds.

• Window: period of time used for accumulating statistics, in seconds.

The data used to compute statistics on the XiVO server is only kept for a maximum of 3 hours. The window period
cannot be configured to go beyond this limit.

Display options can also be set on the client side. A threshold can be configured to change the color of a column
using the following parameters:

• Queue thresholds (waiting calls): number of waiting calls in the queue.

• Display queue’s longest wait: Add a column displaying the number of seconds the longest call has waited.

278 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Queue thresholds (longest wait): number of seconds for the longest waiting call in the queue.

• Display queue number: Add a column displaying the queue’s number.

Monitoring queues on high dimension screens

You may want to display the queue list on one big screen, visible by multiple people. However, the default font
will not be large enough, so the information will not be readable.

You can change the font size of this Xlet by giving a configuration file when launching the XiVO Client:

> xivoclient -stylesheet big_fonts.qss # Windows and Mac
$ xivoclient -- -stylesheet big_fonts.qss # GNU/Linux

The big_fonts.qss file should contain:

1.9. Contact Center 279

XiVO Documentation, Release 16.08

QueuesView {font-size: 40px;}
QueuesView QHeaderView {font-size: 40px;}

Units of size that can be used are described on the Qt documentation.

Agent List General information

The queue list is a dashboard displaying each agent configured on the XiVO.

Columns

Number The agent’s number

First name & Last name The agent’s first name and last name

Listen A clickable cell to listen to the agent’s current call.

Clicking on the cell will make your phone ring. When you’ll answer, you’ll hear the conversation the agent
is having.

You’ll then be able to press the following digits on your phone to switch between the different “listen”
modes:

• 4 - spy mode (default). No one hears you.

• 5 - whisper mode. Only the agent hears you.

• 6 - barge mode. Both the agent and the person he’s talking to hear you.

Status since Shows the agent’s status and the time spent in this status. An agent can have three statuses:

• Not in use when he is ready to answer an ACD call

• Out of queue when he called or answered a call not from the queue

• In use when he is either on call from a queue, on pause or on wrapup

Logged A clickable cell to log or unlog the agent

Joined queues The number of queues the agent will be receiving calls from

Paused A clickable cell to pause or unpause the agent

Paused queues The number of queues in which the agent is paused

Agent Details General information

Display advanced informations of an agent and enable to login/logoff, add/remove to a queue, and pause/unpause.

1. This is the status information of agent

2. Button to login/logoff agent

3. Supervision button of the Xlet “Calls of a queue”

4. Add/Remove agent for given queue

5. Pause/Unpause button for given queue

280 Chapter 1. Table of Contents

http://doc.qt.nokia.com/latest/stylesheet-reference.html#length.

XiVO Documentation, Release 16.08

Fig. 1.87: Agent Details

1.9. Contact Center 281

XiVO Documentation, Release 16.08

Queue members The queue members lists which agents or phones will receive calls from the selected queue
and some of their attributes.

Columns

Number The agent number or the phone number of the queue member.

Firstname and Lastname First name and last name of the agent or the user to which the phone belongs.

Logged Whether the agent is logged or not. Blank for a phone.

Paused Whether the agent is paused or not. Blank for a phone.

Answered calls Number of calls answered by the member since last login (for an agent), or restart or configura-
tion reload.

Last call Hangup time of the last answered calls.

Penalty Penalty of the queue member.

Link XiVO Client presence to agent presence

You can configure XiVO to have the following scenario:

• The agent person leaves temporarily his office (lunch, break, ...)

• He sets his presence in the XiVO Client to the according state

• The agent will be automatically set in pause and his phone will not ring from queues

• He comes back to his office and set his presence to ‘Available’

• The pause will be automatically cancelled

You can configure the presence states of CTI profiles and attach Actions to them, such as Set in pause or Enable
DND.

You can then attach an action Set in pause for multiple presence states and attach an action Cancel the pause for
the presence state Available.

For now, the actions attached to the mandatory presence Disconnected will not be taken into account.

1.9.4 Agent Status Dashboard

Overview

The goal of the agent status dashboard xlet is to give contact center supervisors a better overview of agent status
evolution in active queues.

282 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Usage

The xlet is read-only and presents a list of queues. For each queue, the xlet displays a status box for each logged
in agent. Each status box gives the following information:

• Agent name

• Agent status: Shows the agent’s status. An agent can have six statuses:

– Not in use when he is ready to answer an ACD call

– Int. Incoming when he answered an internal call not from a queue

– Int. Outgoing when he emitted an internal call not from a queue

– Ext. Incoming when he answered an external call not from a queue

– Ext. Outgoing when he emitted an external call not from a queue

– In use when he is either on call a from a queue, on pause or on wrapup

• Agent status since: Shows the time spent in the current status

• Background color:

– green if Not in use

– purple if Int. Incoming or Int. Outgoing

– pink if Ext. Incoming or Ext. Outgoing

– orange if In use

Note that the agent status will only change when the communication is established, not when phones are ringing.

Known bugs

1. If an agent emits a call via his XiVO Client, the status will change to Int. Outgoing or Ext. Outgoing when
the destination phone rings, instead of when the destination answers.

2. • Given the agent is on an ACD call

• When the agent logs out

• When the agent hangs up the ACD call

• When the agent logs back in via CTI Client

1.9. Contact Center 283

XiVO Documentation, Release 16.08

• Then the agent may be seen as outgoing non-ACD communication, whether there is a non-ACD com-
munication or not

To make the agent Not in use again, make a non-ACD call and hangup.

3. • Given the agent is on ACD call

• When the agent calls someone else (e.g. his supervisor)

• When the ACD call hangs up (while the agent talks to his supervisor)

• Then the agent is seen as available, instead of in outgoing non-ACD communication.

This applies to all kinds of non-ACD calls.

Changing the disposition

The disposition of the Xlet can be changed in two ways:

• Placement of queues

• Which queues are displayed

The disposition is saved whenever the XiVO Client is closed and restored when it is opened again.

Changing the placement of queues

The little windows containing each queue can be resized and moved around. That way, any layout can be achieved,
according to the size and importance of each queue.

Choosing which queues are displayed

There is a little contextual menu when right-clicking on the title bar of every queue window. Checking/unchecking
the lines of this menu shows/hides the associated queue.

284 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Known issues

• There is no profile containing this xlet. The profile must be created manually.

• There is no sorting on agents in a queue.

• An empty queue will display an empty box with no message specifying the queue has no logged agents.

Configuration

No special configuration is necessary other than creating a CTI profile in which the Agent Status Dashboard is
added.

1.9.5 Skills-Based Routing

Introduction

Skills-based routing (SBR), or Skills-based call routing, is a call-assignment strategy used in call cen-
tres to assign incoming calls to the most suitable agent, instead of simply choosing the next available
agent. It is an enhancement to the Automatic Call Distributor (ACD) systems found in most call cen-
tres. The need for skills-based routing has arisen, as call centres have become larger and dealt with
a wider variety of call types.

—Wikipedia

In this respect, skills-based routing is also based on call distribution to agents through waiting queues, but one or
many skills can be assigned to each agent, and call can be distributed to the most suitable agent.

In skills-based routing, you will have to find a way to be able to tag the call for a specific skill need. This can be
done for example by entering the call distribution system using different incoming call numbers, using an IVR to
let the caller do his own choice, or by requesting to the information system database the customer profile.

Fig. 1.88: Skills-Based Routing

Getting Started

• Create the skills

• Apply the skills to the agents

• Create the skill rule sets

• Assign the skill rule sets using a configuration file

• Apply the skill rule sets to call qualification, i.e. incoming calls by using the preprocess subroutine field

Note that you shouldn’t use skill based routing on a queue with queue members of type user because the behaviour
is not defined and might change in a future XiVO version.

1.9. Contact Center 285

XiVO Documentation, Release 16.08

Skills

Skills are created using the menu Services → Call center → Skills. Each skill belongs to a category. First create
the category, and in this category create different skills.

Note that a skill name can’t contain upper case letters and must be globally unique (i.e. the same name can’t be
used in two different categories).

Fig. 1.89: Skills Creation

Once all the skills are created you may apply them to agents. Agents may have one or more skills from different
categories.

Fig. 1.90: Apply Skills to Agents

It is typical to use a value between 0 and 100 inclusively as the weight of a skill, although any integer is accepted.

Skill Rule Sets

Once skills are created, rule sets can be defined.

A rule set is a list of rules. Here’s an example of a rule set containing 2 rules:

1. WT < 60, english > 50

2. english > 0

The first rule of this rule set can be read as:

If the caller has been waiting for less than 60 seconds (WT < 60), only try to call agents which have
the skill “english” set to a value higher than 50; otherwise, go to the next rule.

And the second rule can be read as:

Only try to call agents which have the skill “english” set to a value higher than 0.

Let’s examine some simple scenarios, because there’s actually some subtilities on how calls are distributed. We
will suppose that we have a queue with the default settings and the following members:

286 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Agent A, with skill english set to 75

• Agent B, with skill english set to 25

Scenario 1

Given:

• Agent A is logged and not in use

• Agent B is logged and not in use

• There is no call in the queue

When a new call enters the queue, then it is distributed to Agent A. As long as Agent A is available and doesn’t
answer the call, the call will never be distributed to Agent B, even after 60 seconds of waiting time.

When another call enters the queue, then after 60 seconds of waiting time, this call will be distributed to Agent B
(and the first call will still be distributed only to Agent A).

The reason is that there’s a difference between a call that is being distributed (i.e. that is making agents ring) and
a call that is waiting for being distributed. When a call is being distributed to a set of members, no other rule is
tried as long as there’s at least 1 of these members available.

Scenario 2

Given:

• Agent A is not logged

• Agent B is logged and not in use

• There is no call in the queue

When a new call enters the queue, then it is immediately distributed to Agent B.

The reason is that when there’s no logged agent matching a rule, the next rule is immediately tried.

Rules

Each rule set is composed of rules, and each rule has two parts, separated by a comma:

• the first part (optional) is the “dynamic part”

• the second part is the “skill part”

Each part contains an expression composed of operators, variables and integer constants.

Operators

The following operators can be used inside rules:

Comparison operators:

• operand1 ! operand2 (is not equal)

• operand1 = operand2 (is equal)

• operand1 > operand2 (is greater than)

• operand1 < operand2 (is lesser than)

Logical operators:

• operand1 & operand2 (both are true)

1.9. Contact Center 287

XiVO Documentation, Release 16.08

• operand1 | operand2 (at least one of them are true)

‘!’ is the operator with the higher priority, and ‘|’ the one with the lower priority. You can use parentheses ‘()’ to
change the priority of operations.

Dynamic Part

The dynamic part can reference the following variables:

• WT

• EWT

The waiting time (WT) is the elapsed time since the call entered the queue. The time the call pass in an IVR or
another queue is not taken into account.

The estimated waiting time (EWT) has never fully worked. It is mentioned here only for historical reason. You
should not use it. It might be removed in a future XiVO version.

Examples

• WT < 60

Skill Part

The skill part can reference any skills name as variables.

You can also use meta-variables, starting with a ‘$’, to substitute them with data set on the Queue() call. For
example, if you call Queue() with the skill rule set argument equal to:

select_lang(lang=german)

Then every $lang occurrence will be replaced by ‘german’.

Fig. 1.91: Create Skill Rule Sets

Examples

• english > 50

• technic ! 0 & ($os > 29 & $lang > 39 | $os > 39 & $lang > 19)

Evaluation

Note that the expression:

288 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

english | french

is equivalent to:

english ! 0 | french ! 0

Sometimes, a rule references a skill which is not defined for every agent. For example, given the following rule:

english > 0 | english < 1

Then, for an agent which has the skill english defined, the result of this expression is always true. For an agent
which does not have the skill english defined, the result of this expression is always false.

Said differently, an agent without a skill X is not the same as an agent with the skill X set to the value 0.

Technically, this is what is happening when evaluating the rule “english > 0” for an agent without the skill english:

english > 0
= <Substituing english with the agent value>

"undefined" > 0
= <A comparison with "undefined" in at least one operand yields undefined>

"undefined"
= <In a boolean context, "undefined" is equal to false>

false

This behaviour applies to every comparison operators.

Also, the syntax that is currently accepted for comparison is always of the form:

variable cmp_op constant

Where “variable” is a variable name, “cmp_op” is a comparison operator and “constant” is an integer constant.
This means the following expressions are not accepted:

• 10 < english (but english > 10 is accepted)

• english < french (the second operand must be a constant)

• 10 < 11 (the first operand must be a variable name)

Apply Skill Rule Sets

A skill rule set is attached to a call using a bit of dialplan. This dialplan is stored in a configuration file you may
edit using menu Services → IPBX → Configuration Files.

Fig. 1.92: Use Rule Set In Dialplan

In the figure above, 3 different languages are selected using three different subroutines.

Each of this different selections of subroutines can be applied to the call qualifying object. In the following
example language selection is applied to incoming calls.

Example

1.9. Contact Center 289

XiVO Documentation, Release 16.08

Fig. 1.93: Apply Rule Set to Incoming Call

Configuration file for simple skill selection :

[simple_skill_english]
exten = s,1,Set(XIVO_QUEUESKILLRULESET=english_rule_set)
same = n,Return()

[simple_skill_french]
exten = s,1,Set(XIVO_QUEUESKILLRULESET=french_rule_set)
same = n,Return()

Monitoring

You may monitor your waiting calls with skills using the asterisk CLI and the command queue show
<queue_name>:

xivo-jylebleu*CLI> queue show services
services has 1 calls (max unlimited) in 'ringall' strategy (0s holdtime, 2s talktime), W:0, C:1, A:10, SL:0.0% within 0s

Members:
Agent/2000 (Not in use) (skills: agent-1) has taken no calls yet
Agent/2001 (Unavailable) (skills: agent-4) has taken no calls yet

Virtual queue english:
Virtual queue french:

1. SIP/jyl-dev-assur-00000017 (wait: 0:05, prio: 0)
Callers:

You may monitor your skills groups with the command queue show skills groups <agent_name>:

xivo-jylebleu*CLI> queue show skills groups <PRESS TAB>
agent-2 agent-3 agent-4 agent-48 agent-7 agent-1
xivo-jylebleu*CLI> queue show skills groups agent-1
Skill group 'agent-1':

- bank : 50
- english : 100

You may monitor your skills rules with the command queue show skills rules <rule_name>:

xivo-jylebleu*CLI> queue show skills rules <PRESS TAB>
english french select_lang

290 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

xivo-jylebleu*CLI> queue show skills rules english
Skill rules 'english':

=> english>90

1.9.6 Statistics

Overview

The statistics page is used to monitor the efficiency of queues and agents. Statistics are automatically generated
every six hours. They can also be generated manually.

Note: The contact center statistics do not apply to switchboard queues. See Switchboard for more details.

Note: The oldest statistics are periodically removed. See Purge Logs for more details.

Configuration

In order to display call center statistics, you must create at least one configuration profile.

Fig. 1.94: Statistics Configuration

The configuration profile is used to generate reports from the cache. The cache is generated independently from
the configuration so adding a new configuration does not require a new cache generation.

1.9. Contact Center 291

XiVO Documentation, Release 16.08

Configuration options

Field Values Description

name string Configuration name, useful for remembering what the configuration is
used for

interval enum [0-999]
[day, week,
month]

Default time interval used when displaying statistics. Examples: “-1 day”:
show statistics for yesterday “-3 weeks”: show statistics for the last 3
weeks

show on
summary
page

Display this configuration on the summary page

timezone Amer-
ica/Montreal

Your time zone

Period
cache

Maximum and minimum dates that can be used for displaying statistics

start YYYY-MM Start date
end YYYY-MM End date. If left to 0, use the servers’ current date

Working
Hours

Work hours for agents

start hh:mm Beginning of working hours.
end hh:mm End of working hours

Periods Number of calls answered for a time period
Period 1 number of

seconds
(Example: 20)

Show number of calls answered within 20 seconds in column “P1”

Period n number of
seconds
(Example: 20)

Show number of calls answered within 20 seconds in column “Pn”

Note: Calls outside of working hours will not be in the cache. e.g. if working hours are from 8:00 AM to 16:00
PM, a call at 7:55 AM will not show up in the reports.

Note: Statistics are computed on the hour. e.g. If work hours are from 8:30 to 16:15, working hours should be
set from 8:00 to 17:00.

Note: Period includes both bounds, if the same number is used for the higher bound and the lower bound of next
period, some calls will be counted twice. i.e period 1 : 0-30 period 2 : 31-60 period 3 : 61

How to generate the cache

The cache must be generated before using reports. By default, the cache is automatically generated every six
hours.

However, you can safely generate it manually. The script to generate the cache is xivo-stat fill_db. When this script
is run, statistics will be regenerated for the last 8 hours starting from the previous hour. e.g. If you run xivo-stat
on 2012-08-04 11:47:00, statistics will be regenerated from 2012-08-04 03:00:00 to 2012-08-04 11:47:00

292 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Note: xivo-stat fill_db can be a long operation when used for the first time or after a xivo-stat clean_db

Warning: The current events have an end date of the launch date of the script xivo-stat as the end date.

Clearing the cache

If for some reason the cache generation fails or the cache becomes unusable, the administrator can safely clean
the cache using xivo-stat clean_db and then regenerate it. This operation will only clear the cache and does not
erase any other data.

Queue statistics

Queue statistics can be viewed in Services → Statistics → Queue.

The first table displays a list of queues with all the counters for the period choosen from the Dashboard panel

By clicking on a queue name you may display detailed queue statistics

Statistics can be displayed :

By week

By month

By year

Counters

• Received: Total number of received calls

• Answered: Calls answered by an agent

• Abandoned: Calls that were hung up while waiting for an answer

• Dissuaded or Overflowed:

– Closed: Calls received when the queue was closed

– No answer (NA): Calls that reached the ring timeout delay

– Satured: Calls received when the queue was already full (“Maximum number of people allowed to
wait:” limit of advanced tab) or when one of the diversion parameters were reached

– Blocking : Calls received when no agents were available or when there were no agents to take the call,
join an empty queue condition or remove callers if there are no agents condition is reached (advanced
queue parameter tab).

• Average waiting time (AWT): The average waiting time of call on wait

• Answered rate (HR): The ratio of answered calls over (received calls - closed calls)

1.9. Contact Center 293

XiVO Documentation, Release 16.08

294 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.9. Contact Center 295

XiVO Documentation, Release 16.08

• Quality of service (QoS): Percentage of calls answered in less than x seconds over the number of answered
calls, where x is defined in the configuration

Agent performance

Agent performance statistics can be viewed in Services → Statistics → Performance agents.

Note: The agent performance counters do not take into account transfer between agents: if agent A processes
a call and transfers it to agent B, only the counters of agent A will be updated. Ignoring any info after the call
transfer.

Counters

• Answered: Number of calls answered by the agent

• Conversation: Total time spent for calls answered during a given period

• Login: Total login time of an agent.

• Wrapup: Total time spent in wrapup by an agent.

• Pause: Total pause time of an agent

Warning: Data generated before XiVO 12.19 might have erroneous results for the Login time counter

Note: The Pause time counter only supports PAUSEALL and UNPAUSEALL command from cticlient. The
agent must also be a member of a least 1 queue.

Note: Wrapup time events were added to XiVO in version 12.21

296 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Agent summary

Agent per day

Agent per week

Agent per month

Agent per year

Period details

Display by period defined in configuration, i.e. between 0 and 10s, 10s and 30s etc ... the number of handled calls
and the number of abandonned calls

You may click on a queue name to get more information for this queue

1.9. Contact Center 297

XiVO Documentation, Release 16.08

298 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.9. Contact Center 299

XiVO Documentation, Release 16.08

Period details by day

Period details by week

Period details by month

Period details by year

1.9.7 Reporting

You may use your own reporting tools to be able to produce your own reports provided you do not use the XiVO
server original tables, but copy the tables to your own data server. You may use the following procedure as a
template :

• Allow remote database access on XiVO

• Create a postgresql account read only on asterisk database

• Create target tables in your database located on the data server

• Copy the statistic table content to your data server

General Architecture

1. The queue_log table of the asterisk database is filled by events from Asterisk and by custom dialplan events

2. xivo-stat fill_db is then used to read data from the queue_log table and generate the tables
stat_call_on_queue and stat_queue_periodic

3. The web interface generate tables and graphics from the stat_call_on_queue and stat_queue_periodic tables
depending on the selected configuration

300 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.9. Contact Center 301

XiVO Documentation, Release 16.08

Statistic Data Table Content

stat_call_on_queue

This table is used to store each call individually. Each call received on a queue generates a single entry in this
table containing time related fields and a foreign key to the agent who answered the call and another on the queue
on which the call was received.

It also contains the status of the call ie. answered, abandoned, full, etc.

302 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.95: Statistics Architecture

1.9. Contact Center 303

XiVO Documentation, Release 16.08

Field Values Description
id gener-

ated
cal-
lid

nu-
meric
value

This call id is also used in the CEL table and can be used to get call detail information

time Call
time

ring-
time

Ringing duration time in seconds

talk-
time

Talk time duration in seconds

wait-
time

Wait time duration in seconds

sta-
tus

See status description below

queue_id Id of the queue, the name of the queue can be found in table stat_queue, using this
name queue details can be found in table queuefeatures

agent_id Id of the agent, the agent name can be found in table stat_agent, using this name agent
details can be found in table agentfeatures using the number in the second part of the
name Exemple : Agent/1002 is agent with number 1002 in table agentfeatures

Queue Call Status

Status Description
full Call was not queued because queue was full, happens when the number of calls is greater than

the maximum number of calls allowed to wait
closed Closed due to the schedule applied to the queue
joinempty No agents were available in the queue to take the call (follows the join empty parameter of the

queue)
leaveempty No agents available while the call was waiting in the qeuue
di-
vert_ca_ratio

Call diverted because the ratio number of agent number of calls waiting configured was
exceeded

di-
vert_waittime

Call diverted because the maximum expected waiting time configured was exceeded

answered Call was answered
aban-
doned

Call hangup by the caller

timeout Call stayed longer than the maximum time allowed in queue parameter

stat_queue_periodic Table

This table is an aggregation of the queue_log table.

This table contains counters on each queue for each given period. The granularity at the time of this writing is an
hour and is not configurable. This table is then used to compute statistics for a given range of hours, days, week,
month or year.

304 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Field Description
id Generated id
time time period, all counters are aggregated for an hour
answered Number of answered calls during the period
abandoned Number of abandoned calls during the period
total Total calls received during the period
full Number of calls received when queue was full
closed Number of calls received on close
joinempty Number of calls received no agents available
leaveempty Number of calls diverted agents not available during the wait
di-
vert_ca_ratio

Number of calls diverted due to the number of agent number versus calls waiting configured
was exceeded

di-
vert_waittime

Number of calls diverted because the maximum expected waiting time configured was
exceeded

timeout Number of calls diverted because the maximum time allowed in queue parameter was
exceeded

queue_id

stat_agent

This table is used to match agents to an id that is different from the id in the agent configuration table. This
is necessary to avoid loosing statistics on a deleted agent. This also means that if an agent changes number
ie. Agent/1001 to Agent/1202, the supervisor will have to take this information into account when viewing the
statistics. Affecting an old number to a another agent also means that the supervisor will have to ignore entries for
this given agent for the period before the number assignment to the new agent.

stat_queue

This table is used to store queues in a table that is different from the queue configuration table. This is necessary
to avoid losing statistics on a deleted queue. Renaming a queue is also not handled at this time.

1.10 High Availability (HA)

The HA (High Availability) solution in XiVO makes it possible to maintain basic telephony function whether your
main XiVO server is running or not. When running a XiVO HA cluster, users are guaranteed to never experience
a downtime of more than 5 minutes of their basic telephony service.

The HA solution in XiVO is based on a 2-nodes “master and slave” architecture. In the normal situation, both
the master and slave nodes are running in parallel, the slave acting as a “hot standby”, and all the telephony
services are provided by the master node. If the master fails or must be shutdown for maintenance, then the
telephony devices automatically communicate with the slave node instead of the master one. Once the master
is up again, the telephony devices failback to the master node. Both the failover and the failback operation are
done automatically, i.e. without any user intervention, although an administrator might want to run some manual
operations after failback as to, for example, make sure any voicemail messages that were left on the slave are
copied back to the master.

1.10.1 Prerequisites

The HA in XiVO only works with telephony devices (i.e. phones) that support the notion of a primary and backup
telephony server.

• Phones must be able to reach the master and the slave (take special care if master and slave are not in the
same subnet)

• If firewalling, the master must be allowed to join the slave on ports 22 and 5432

1.10. High Availability (HA) 305

XiVO Documentation, Release 16.08

• If firewalling, the slave must be allowed to join the master with an ICMP ping

• Trunk registration timeout (expiry) should be less than 300 seconds (5 minutes)

• The slave must have no provisioning plugins installed.

The HA solution is guaranteed to work correctly with the following devices.

1.10.2 Quick Summary

• You need two configured XiVO (wizard passed)

• Configure one XiVO as a master -> setup the slave address (VoIP interface)

• Restart services (xivo-service restart) on master

• Configure the other XiVO as a slave -> setup the master address (VoIP interface)

• Configure file synchronization by runnning the script xivo-sync -i on the master

• Start configuration synchronization by running the script xivo-master-slave-db-replication
<slave_ip> on the master

• Resynchronize all your devices

• Configure the XiVO Clients

That’s it, you now have a HA configuration, and every hour all the configuration done on the master will be
reported to the slave.

1.10.3 Configuration Details

First thing to do is to install 2 XiVO.

Important: When you upgrade a node of your cluster, you must also upgrade the other so that they both are
running the same version of XiVO. Otherwise, the replication might not work properly.

You must configure the HA in the Web interface (Configuration → Management → High Availability page).

You can configure the master and slave in whatever order you want.

You must also run xivo-sync -i on the master to setup file synchronization. Running xivo-sync -i will
create a passwordless SSH key on the master, stored under the /root/.ssh directory, and will add it to the
/root/.ssh/authorized_keys file on the slave. The following directories will then be rsync’ed every
hour:

• /etc/asterisk/extensions_extra.d

• /etc/xivo/asterisk

• /var/lib/asterisk/agi-bin

• /var/lib/asterisk/moh

• /var/lib/consul/raft

• /var/lib/xivo/certificates

• /var/lib/xivo/sounds/acd

• /var/lib/xivo/sounds/playback

Warning: When the HA is configured, some changes will be automatically made to the configuration of
XiVO.

SIP expiry value on master and slave will be automatically updated:

306 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• min: 3 minutes

• max: 5 minutes

• default: 4 minutes

Fig. 1.96: Services → IPBX → General Settings → SIP Protocol

The provisioning server configuration will be automatically updated in order to allow phones to switch from XiVO
power failure.

Fig. 1.97: Configuration → Provisioning → Template Line → Edit default

Warning: Do not change these values when the HA is configured, as this may cause problems. These values
will be reset to blank when the HA is disabled.

Important: For the telephony devices to take the new proxy/registrar settings into account, you must resynchro-
nize the devices or restart them manually.

1.10. High Availability (HA) 307

XiVO Documentation, Release 16.08

Disable node

Default status of HIGH AVAILABILITY (HA) is disabled:

Note: You can reset at any time by choosing a server mode (disabled)

Fig. 1.98: HA Dashboard Disabled (default state)

Important: You have to restart services (xivo-service restart) once the master node is disabled.

Master node

In choosing the method Master you must enter the IP address of the VoIP interface of the slave node.

Fig. 1.99: HA Dashboard Master

Important: You have to restart all services (xivo-service restart) once the master node is configured.

Slave node

In choosing the method Slave you must enter the IP address of the VoIP interface of the master node.

Fig. 1.100: HA Dashboard Slave

308 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Replication Configuration

Once master slave configuration is completed, XiVO configuration is replicated from the master node to the slave
every hour (:00).

Replication can be started manually by running the replication scripts on the master:

xivo-master-slave-db-replication <slave_ip>
xivo-sync

The replication does not copy the full XiVO configuration of the master. Notably, these are excluded:

• All the network configuration (i.e. everything under the Configuration → Network section)

• All the support configuration (i.e. everything under the Configuration → Support section)

• Call logs

• Call center statistics

• Certificates

• HA settings

• Provisioning configuration

• Voicemail messages

Less importantly, these are also excluded:

• Queue logs

• CELs

XiVO Client

You have to enter the master and slave address in the Connection tab of the XiVO Client configuration :

The main server is the master node and the backup server is the slave node.

When connecting the XiVO Client with the main server down, the login screen will hang for 3 seconds before
connecting to the backup server.

1.10.4 Internals

4 scripts are used to manage services and data replication.

• xivo-master-slave-db-replication <slave_ip> is used on the master to replicate the master’s data on the slave
server. It runs on the master.

• xivo-manage-slave-services {start,stop} is used on the slave to start, stop monit and asterisk. The services
won’t be restarted after an upgrade or restart.

• xivo-check-master-status <master_ip> is used to check the status of the master and enable or disable services
accordingly.

• xivo-sync is used to sync directories from master to slave.

1.10.5 Limitations

When the master node is down, some features are not available and some behave a bit differently. This includes:

• Call history / call records are not recorded.

• Voicemail messages saved on the master node are not available.

• Custom voicemail greetings recorded on the master node are not available.

1.10. High Availability (HA) 309

XiVO Documentation, Release 16.08

310 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Phone provisioning is disabled, i.e. a phone will always keep the same configuration, even after restarting
it.

• Phone remote directory is not accessible, because provisioned IP address points to the master.

Note that, on failover and on failback:

• DND, call forwards, call filtering, ..., statuses may be lost if changed recently.

• If you are connected as an agent, then you might need to reconnect as an agent when the master goes down.
Since it’s hard to know when the master goes down, if your CTI client disconnects and you can’t reconnect
it, then it’s a sign the master might be down.

Additionally, only on failback:

• Voicemail messages are not copied from the slave to the master, i.e. if someone left a message on your
voicemail when the master was down, you won’t be able to consult it once the master is up again.

• More generally, custom sounds are not copied back. This includes recordings.

Here’s the list of limitations that are more relevant on an administrator standpoint:

• The master status is up or down, there’s no middle status. This mean that if Asterisk is crashed the XiVO is
still up and the failover will NOT happen.

1.10.6 Berofos Integration

Berofos Integration

XiVO offers the possibility to integrate a berofos failover switch within a HA cluster.

This is useful if you have one or more ISDN lines (i.e. T1/E1 or T0 lines) that you want to use whatever the state
of your XiVO HA cluster. To use a berofos within your XiVO HA installation, you need to properly configure
both your berofos and your XiVOs, then the berofos will automatically switch your ISDN lines from your master
node to your slave node if your master goes down, and vice-versa when it comes back up.

You can also use a Berofos failover switch to secure the ISDN provider lines when installing a XiVO in front of
an existing PBX. The goal of this configuration is to mitigate the consequences of an outage of the XiVO : with
this equipment the ISDN provider links could be switched to the PBX directly if the XiVO goes down.

XiVO does not offer natively the possibility to configure Berofos in this failover mode. The Berofos Integration
with PBX section describes a workaround.

Installation and Configuration

Master Configuration There is nothing to be done on the master node.

Slave Configuration First, install the bntools package:

apt-get install bntools

This will make the bnfos command available.

You can then connect your berofos to your network and power it on. By default, the berofos will try to get an
IP address via DHCP. If it is not able to get such address from a DHCP server, it will take the 192.168.0.2/24 IP
address.

Note: The DHCP server on XiVO does not offer IP addresses to berofos devices by default.

Next step is to create the /etc/bnfos.conf file via the following command:

1.10. High Availability (HA) 311

http://www.beronet.com/product/failover-switch/

XiVO Documentation, Release 16.08

bnfos --scan -x

If no berofos device is detected using this last command, you’ll have to explicitly specify the IP address of the
berofos via the -h option:

bnfos --scan -x -h <berofos ip>

At this stage, your /etc/bnfos.conf file should contains something like this:

[fos1]
mac = 00:19:32:00:12:1D
host = 10.34.1.50
#login = <user>:<password>

It is advised to configure your berofos with a static IP address. You first need to put your berofos into flash mode :

• press and hold the black button next to the power button,

• power on your berofos,

• release the black button when the red LEDs of port D start blinking.

Then, you can issue the following command, by first replacing the network configuration with your one:

bnfos --netconf -f fos1 -i 10.34.1.20 -n 255.255.255.0 -g 10.34.1.1 -d 0

Note:

• -i is the IP address

• -n is the netmask

• -g is the gateway

• -d 0 is to disable DHCP

You can then update your berofos firmware to version 1.53:

wget http://www.beronet.com/downloads/berofos/bnfos_v153.bin
bnfos --flash bnfos_v153.bin -f fos1

Once this is done, you’ll have to reboot your berofos in operationnal mode (that is in normal mode).

Then you must rewrite the /etc/bnfos.conf (mainly if you changed the IP address):

bnfos --scan -x -h <berofos ip>

Now that your berofos has proper network configuration and an up to date firmware, you might want to set a
password on your berofos:

bnfos --set apwd=<password> -f fos1
bnfos --set pwd=1 -f fos1

You must then edit the /etc/bnfos.conf and replace the login line to something like:

login = admin:<password>

Next, configure your berofos for it to work correctly with the XiVO HA:

bnfos --set wdog=0 -f fos1
bnfos --set wdogdef=0 -f fos1
bnfos --set scenario=0 -f fos1
bnfos --set mode=1 -f fos1
bnfos --set modedef=1 -f fos1

312 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

This, among other things, disable the watchdog. The switching from one relay mode to the other will be done by
the XiVO slave node once it detects the master node is down, and vice-versa.

Finally, you can make sure everything works fine by running the xivo-berofos command:

xivo-berofos master

The green LEDs on your berofos should be lighted on ports A and B.

Connection

Two XiVOs Here’s how to connect the ISDN lines between your berofos with:

• two XiVOs in high availability

In this configuration you can protect up two 4 ISDN lines. If more than 4 ISDN lines to protect, you must set up
a Multiple berofos configuration.

Here’s an example with 4 ISDN lines coming from your telephony provider:

ISDN lines (provider)
| | | |
| | | |

+---+
| A B C D |
| 1|2|3|4 1|2|3|4 1|2|3|4 1|2|3|4 |
+---+

| | | | | | | |
| | | | | | | |

+--------+ +--------+
| xivo-1 | | xivo-2 |
+--------+ +--------+

Two XiVOs and one PBX Here’s how to connect your berofos with:

• two XiVOs in high availability,

• one PBX.

In this configuration you can protect up two 2 ISDN lines. If more than 2 ISDN lines to protect, you must set up
a Multiple berofos configuration.

Logical view:

+--------+ +-----+
-- Provider ----| xivo-1 | -- ISDN Interconnection --| PBX | -- Phones

+--------+ +-----+
| xivo-2 |
+--------+

This example shows the case where there are 2 ISDN lines coming from your telephony provider:

ISDN lines (provider)
| |
| |

+--+
| A B C D |
| 1|2|3|4 1|2 3|4 1|2|3|4 1|2 3|4 |
+--+

| | CPE | | | | NET CPE | | | | NET
| | spans | | | | spans spans | | | | spans
| | +----------+ +------------+
| | | xivo-1 | | xivo-2 |
| | +----------+ +------------+

1.10. High Availability (HA) 313

XiVO Documentation, Release 16.08

| |
| |

+------+
| PBX |
+------+

One XiVO and one PBX This case is not currently supported. You’ll find a workaround in the Berofos Integra-
tion with PBX section.

Multiple berofos It’s possible to use more than 1 berofos with XiVO.

For each supplementary berofos you want to use, you must first configure it properly like you did for the first
one. The only difference is that you need to add a berofos declaration to the /etc/bnfos.conf file instead of
creating/overwriting the file. Here’s an example of a valid config file for 2 berofos:

[fos1]
mac = 00:19:32:00:12:1D
host = 10.100.0.201
login = admin:foobar

[fos2]
mac = 00:11:22:33:44:55
host = 10.100.0.202
login = admin:barfoo

Warning: berofos name must follow the pattern fosX where X is a number starting with 1, then 2, etc. The
bnfos tool won’t work properly if it’s not the case.

Operation

When your XiVO switch the relay mode of your berofos, it logs the event in the /var/log/syslog file.

Default mode

Note that when the berofos is off, the A and D ports are connected together. This behavior is not customizable.

Uninstallation

It is important to remove the /etc/bnfos.conf file on the slave node when you don’t want to use anymore
your berofos with your XiVOs.

Reset the Berofos

You can reset the berofos configuration :

1. Power on the berofos,

2. When red and green LEDs are still lit, press & hold the black button,

3. Release it when the red LEDs of the D port start blinking fast

4. Reboot the beronet, it should have lost its configuration.

314 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

External links

• berofos user manual

1.10.7 Troubleshooting

When replicating the database between master and slave, if you encounter problems related to the system locale,
see PostgreSQL localization errors.

1.11 Scalability and Distributed Systems

This section gathers configuration that are possible using XiVO to feature rich scalable communication systems.

1.11.1 Contact and Presence Sharing

XiVO allow the administrator to share presence and statuses between multiple installations. For example, an
enterprise could have a XiVO in each office and still be able to search, contact and view the statuses of colleagues
in other offices.

This page will describe the steps that are required to configure such use case.

1.11. Scalability and Distributed Systems 315

http://www.beronet.com/downloads/docs/berofos/berofos_user_manual.pdf

XiVO Documentation, Release 16.08

Prerequisite

1. All XiVO that you interconnect should be on the same version

2. This configuration is only possible with XiVO 15.19 and above

3. All ports necessary for communication should be open Network

Warning: If you are cloning a virtual machine or copy the database, the UUID of the two XiVO will be the
same, you must regenerate them in the infos table of the asterisk database and restart all services. You must
also remove all consul data that included the old UUID.

Warning: Telephony will be interrupted during the configuration period.

Warning: The configuration must be applied to each XiVO you want to interconnect. For example, if 6
different XiVO are to be connected, the configuration for all other XiVO should be added. This does not apply
to the message bus which can use a ring policy, each XiVO talking to its two neighbours.

Warning: You should use your firewall to restrict access to the HTTP ports of consul and xivo-ctid, because
they don’t have any authentication mechanism enabled.

Note: In an architecture with a lot of XiVO, we recommend that you centralize some services, such as xivo-dird,
to make your life easier. Don’t forget redundancy. This applies also to RabbitMQ and Consul. In this case, the
configuration will have to be done entirely manually in YAML config files.

For this procedure, the following name and IP addresses will be used:

• XiVO 1: 192.168.1.124

• XiVO 2: 192.168.1.125

Add a Web Service User

The first thing is to make XiVO accept remote connections to your internal users directory. For this, you must
create a Web service access by authorizing either an IP address or a login/password.

This can be done in Configuration → Management → Web Services Access

316 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Configuring the directories

Add New Directory Sources for Remote XiVO

For each remote XiVO a new directory has to be created in Configuration → Management → Directories

Note: We recommend doing a working configuration without certificate verification first. Once you get it work-
ing, enable certificate verification.

Add a Directory Definition for Each New Directories

To add a new directory definition, go to Services → CTI Server → Directories → Definitions

In each directory definition, add the fields to match the configured Display filters

Add the New Definitions to Your Dird Profiles

At the moment of this writing xivo-dird profiles are mapped directly to the user’s profile. For each internal context
where you want to be able to see user’s from other XiVO, add the new directory definitions in Services → CTI
Server → Directories → Direct directories.

Restart xivo-dird

To apply the new directory configuration, you can either restart from:

• Services → IPBX

1.11. Scalability and Distributed Systems 317

XiVO Documentation, Release 16.08

318 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.11. Scalability and Distributed Systems 319

XiVO Documentation, Release 16.08

• on the command line service xivo-dird restart

Check that the Configuration is Working

At this point, you should be able to search for users on other XiVO from the People Xlet.

Configuring RabbitMQ

Create a RabbitMQ user

rabbitmqctl add_user xivo xivo
rabbitmqctl set_user_tags xivo administrator
rabbitmqctl set_permissions -p / xivo ".*" ".*" ".*"
rabbitmq-plugins enable rabbitmq_federation

Restart RabbitMQ

service rabbitmq-server restart

Setup Message Federation

rabbitmqctl set_parameter federation-upstream xivo-dev-2 '{"uri":"amqp://xivo:xivo@192.168.1.125","max-hops":1}' # remote IP address
rabbitmqctl set_policy federate-xivo 'xivo' '{"federation-upstream-set":"all"}' --priority 1 --apply-to exchanges

Configure xivo-ctid

Create a Custom Configuration File

Create a configuration file for xivo-ctid, e.g /etc/xivo-ctid/conf.d/interconnection.yml

rest_api:
http:
listen: 0.0.0.0

service_discovery:
advertise_address: auto
advertise_address_interface: eth0 # Interface bearing the IP address of this XiVO, reachable from outside

Restart xivo-ctid

service xivo-ctid restart

Check That Service Discovery is Working

apt-get install consul-cli

consul-cli agent-services --ssl --ssl-verify=false

The output should include a service names xivo-ctid with an address that is reachable from other XiVO.

320 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

{"consul": {"ID": "consul",
"Service": "consul",
"Tags": [],
"Port": 8300,
"Address": ""},

"e546a652-e290-47e2-8519-ec3642daa6e6": {"ID": "e546a652-e290-47e2-8519-ec3642daa6e6",
"Service": "xivo-ctid",
"Tags": ["xivo-ctid",

"607796fc-24e2-4e26-8009-cbb48a205512"],
"Port": 9495,
"Address": "192.168.1.124"}}

Configure Consul

Stop XiVO

xivo-service stop

Remove All Consul Data

rm -rf /var/lib/consul/raft/
rm -rf /var/lib/consul/serf/
rm -rf /var/lib/consul/services/
rm -rf /var/lib/consul/tmp/
rm -rf /var/lib/consul/checks/

Configure Consul to be Reachable from Other XiVO

Add a new configuration file /etc/consul/xivo/interconnection.json with the following content where adver-
tise_addr is reachable from other XiVO.

{
"client_addr": "0.0.0.0",
"bind_addr": "0.0.0.0",
"advertise_addr": "192.168.1.124" // The IP address of this XiVO, reachable from outside
}

Check that the Configuration is Valid

consul configtest --config-dir /etc/consul/xivo/

No output means that the configuration is valid.

Start Consul

service consul start

Start XiVO

xivo-service start

1.11. Scalability and Distributed Systems 321

XiVO Documentation, Release 16.08

Join the Consul Cluster

Join another member of the Consul cluster. Only one join is required as members will be propagated.

consul join -wan 192.168.1.125

Check that Consul Sees other Consul

List other members of the cluster with the following command

consul members -wan

Check consul logs for problems

consul monitor

Check That Everything is Working

There is no further configuration needed, you should now be able to connect your XiVO Client and search contacts
from the People Xlet. When looking up contacts of another XiVO, you should see their phone status, their user
availability, and agent status dynamically.

Troubleshooting

Chances are that everything won’t work the first time, here are some interesting commands to help you debug the
problem.

tail -f /var/log/xivo-dird.log
tail -f /var/log/xivo-ctid.log
tail -f /var/log/xivo-confd.log
consul monitor
consul members -wan
consul-cli agent-services --ssl --ssl-verify=false
rabbitmqctl eval 'rabbit_federation_status:status().'

What’s next?

One you get this part working, check out Phonebook Sharing.

1.11.2 Phonebook Sharing

Sharing phonebooks allows users of different XiVO servers to access the contacts in the phonebooks of the other
XiVO servers.

This procedure follows the Contact and Presence Sharing (but it’s not mandatory), so we will use the same
conventions.

Open Phonebook Access

On each XiVO, you must have a Web Services User that authorizes access from another host (not by lo-
gin/password). The phonebook access does not support login/password authorization.

This Web Services user will allow other XiVO servers to access the phonebook of this XiVO.

322 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.11. Scalability and Distributed Systems 323

XiVO Documentation, Release 16.08

Configuring the Directories

For each remote XiVO a new phonebook has to be created in Configuration → Management → Directories

Note that the URL of the directory must contain restricted, not private, e.g:

http://192.168.1.125/service/ipbx/json.php/restricted/pbx_services/phonebook

Add a Directory Definition for Each Phonebook

To add a new directory definition, go to Services → CTI Server → Directories → Definitions

In each directory definition, add the fields to match the other phonebooks:

Add the New Definitions to Your Users

We just defined the directories, now let’s use them:

Check That Everything is Working

There is no further configuration needed, you should now be able to connect your XiVO Client and search phone-
book contacts from the People Xlet.

Troubleshooting

Chances are that everything won’t work the first time, here are some interesting commands to help you debug the
problem.

324 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.11. Scalability and Distributed Systems 325

XiVO Documentation, Release 16.08

tail -f /var/log/xivo-dird.log
tail -f /var/log/nginx/xivo.access.log

1.12 API and SDK

1.12.1 Message Bus

The message bus is used to receive events from XiVO. It is provided by an AMQP 0-9-1 broker (namely, Rab-
bitMQ) that is integrated in XiVO.

Warning: Interaction with the bus is presently experimental and some things might change in the next XiVO
versions.

Usage

At the moment, the AMQP broker only listen on the 127.0.0.1 address. This means that if you want to connect to
the AMQP broker from a distant machine, you must modify the RabbitMQ server configuration, which is not yet
an officially supported operation. All events are sent to the xivo exchange.

Otherwise, the default connection information is:

• Virtual host: /

• User name: guest

• User password: guest

• Port: 5672

• Exchange name: xivo

• Exchange type: topic

Example

Here’s an example of a simple client, in python, listening for the call_form_result CTI events:

import kombu

from kombu.mixins import ConsumerMixin

EXCHANGE = kombu.Exchange('xivo', type='topic')
ROUTING_KEY = 'call_form_result'

class C(ConsumerMixin):

def __init__(self, connection):
self.connection = connection

def get_consumers(self, Consumer, channel):
return [Consumer(kombu.Queue(exchange=EXCHANGE, routing_key=ROUTING_KEY),

callbacks=[self.on_message])]

def on_message(self, body, message):
print('Received:', body)
message.ack()

326 Chapter 1. Table of Contents

http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://previous.rabbitmq.com/v2_8_x/documentation.html
http://previous.rabbitmq.com/v2_8_x/documentation.html

XiVO Documentation, Release 16.08

def main():
with kombu.Connection('amqp://guest:guest@localhost:5672//') as conn:

try:
C(conn).run()

except KeyboardInterrupt:
return

main()

If you are new to AMQP, you might want to look at the RabbitMQ tutorial.

Notes

Things to be aware when writing a client/consumer:

• The published messages are not persistent. When the AMQP broker stops, the messages that are still in
queues will be lost.

Changelog

16.08

• The call_held bus message has been added.

• The call_resumed bus message has been added.

16.07

• The user_created bus message has been added.

• The user_edited bus message has been added.

• The user_deleted bus message has been added.

15.20

• The chat_message_event bus message has been added.

15.17

• The service_registered_event and service_deregistered_event bus messages have been added.

Events

Events that are sent to the bus use a JSON serialization format with the content-type application/json. For example,
the CTI call_form_result event looks like this:

{"name": "call_form_result",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {...}}

All events have the same basic structure, namely, a JSON object with 4 keys:

name A string representing the name of the event. Each event type has a unique name.

1.12. API and SDK 327

http://previous.rabbitmq.com/v2_8_x/getstarted.html

XiVO Documentation, Release 16.08

required_acl (optional) Either a string or null. Currently used by xivo-websocketd to determine if a client can
receive the event or not. See the Events Access Control section for more information.

origin_uuid The uuid to identify the message producer.

data The data specific part of the event. This is documented on a per event type; if not this is assumed to be null.

AMI events

All AMI events are broadcasted on the bus.

• routing key: ami.<event name>

• event specific data: a dictionary with the content of the AMI event

Example event with binding key QueueMemberStatus:

{
"name": "QueueMemberStatus",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"Status": "1",
"Penalty": "0",
"CallsTaken": "0",
"Skills": "",
"MemberName": "sip\/m3ylhs",
"Queue": "petak",
"LastCall": "0",
"Membership": "static",
"Location": "sip\/m3ylhs",
"Privilege": "agent,all",
"Paused": "0",
"StateInterface": "sip\/m4ylhs"

}
}

call_form_result

The call_form_result event is sent when a custom call form is submitted by a CTI client.

• routing key: call_form_result

• event specific data: a dictionary with 2 keys:

– user_id: an integer corresponding to the user ID of the client who saved the call form

– variables: a dictionary holding the content of the form

Example:

{
"name": "call_form_result",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"user_id": 40,
"variables": {

"firstname": "John",
"lastname": "Doe"

}
}

}

328 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

agent_status_update

The agent_status_update is sent when an agent is logged in or logged out.

• routing key: status.agent

• required ACL: events.statuses.agents

• event specific data: a dictionary with 3 keys:

– agent_id: an integer corresponding to the agent ID of the agent who’s status changed

– status: a string identifying the status

– xivo_id: the uuid of the xivo

Example:

{
"name": "agent_status_update",
"required_acl": "events.statuses.agents",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"agent_id": 42,
"xivo_id": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"status": "logged_in"

}
}

call_created, call_updated, call_ended

The events call_created, call_updated, call_ended are sent when a call handled by xivo-ctid-ng is
received, connected or hung up.

• routing key: calls.call.created, calls.call.updated, call.call.ended

• required ACL: events.calls.<user_uuid>

• event specific data: a dictionary with the same fields as the REST API model of Call (See http://api.xivo.io,
section xivo-ctid-ng)

Example:

{
"name": "call_created",
"required_acl": "events.calls.2e752722-0864-4665-887d-a78a024cf7c7",
"origin_uuid": "08c56466-8f29-45c7-9856-92bf1ba89b82",
"data": {

"bridges": [],
"call_id": "1455123422.8",
"caller_id_name": "Some One",
"caller_id_number": "1001",
"creation_time": "2016-02-10T11:57:02.592-0500",
"status": "Ring",
"talking_to": {},
"user_uuid": "2e752722-0864-4665-887d-a78a024cf7c7"

}
}

call_held

This message is sent when a call is placed on hold

• routing key: calls.hold.created

1.12. API and SDK 329

http://api.xivo.io

XiVO Documentation, Release 16.08

• event specific data:

– call_id: The asterisk channel unique ID

Example:

{"name": "call_held",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {"call_id": "1465572129.31"}}

call_resumed

This message is sent when a call is resumed from hold

• routing key: calls.hold.deleted

• event specific data:

– call_id: The asterisk channel unique ID

Example:

{"name": "call_resumed",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {"call_id": "1465572129.31"}}

chat_message_event

This message is used to send a chat message to a user

• routing key: chat.message.<xivo-uuid>.<user_id>

• event specific data:

– alias: The nickname of the chatter

– to: The destination’s XiVO UUID and user UUID

– from: The chatter’s XiVO UUID and user UUID

– msg: The message

Example:

{
"name": "chat_message_event",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"alias": "Alice"
"to": ["ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3", "fcb36731-c50a-453e-92c7-571297d41616"],
"from": ["ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3", "4f2e2249-ae2b-4bc2-b5fc-ad42ee01ddaf"],
"msg": "Hi!"

}
}

endpoint_status_update

The endpoint_status_update is sent when an end point status changes. This information is based on asterisk hints.

• routing key: status.endpoint

• required ACL: events.statuses.endpoints

• event specific data: a dictionary with 3 keys

330 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

– xivo_id: the uuid of the xivo

– endpoint_id: an integer corresponding to the endpoint ID

– status: an integer corresponding to the asterisk device state

Example:

{
"name": "endpoint_status_update",
"required_acl": "events.statuses.endpoints",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"endpoint_id": 67,
"xivo_id": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"status": 0

}
}

user_created

The user_created event is published when a new user is created.

• routing key: config.user.created

• event specific data: a dictionary with 2 keys

– id: the ID of the created user

– uuid: the UUID of the created user

Example:

{
"name": "user_created",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"id": 42,
"uuid": "8e58d2a7-cfed-4c2e-ac72-14e0b5c26dc2"

}
}

user_deleted

The user_deleted event is published when a user is deleted.

• routing key: config.user.deleted

• event specific data: a dictionary with 2 keys

– id: the ID of the deleted user

– uuid: the UUID of the deleted user

Example:

{
"name": "user_deleted",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"id": 42,
"uuid": "8e58d2a7-cfed-4c2e-ac72-14e0b5c26dc2"

}
}

1.12. API and SDK 331

XiVO Documentation, Release 16.08

user_edited

The user_edited event is published when a user is modified.

• routing key: config.user.edited

• event specific data: a dictionary with 2 keys

– id: the ID of the modified user

– uuid: the UUID of the modified user

Example:

{
"name": "user_edited",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"id": 42,
"uuid": "8e58d2a7-cfed-4c2e-ac72-14e0b5c26dc2"

}
}

user_status_update

The user_status_update is sent when a user changes his CTI presence using the XiVO client.

• routing key: status.user

• required ACL: events.statuses.users

• event specific data: a dictionary with 3 keys

– xivo_id: the uuid of the xivo

– user_id: an integer corresponding to the user ID of the user who changed its status

– status: a string identifying the status

Example:

{
"name": "user_status_update",
"required_acl": "events.statuses.users",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"user_id": 42,
"xivo_id": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"status": "busy"

}
}

users_forwards_<forward_name>_updated

The users_forwards_<forward_name>_updated is sent when a user changes his forward using REST API.

• forward_name:

– busy

– noanswer

– unconditional

• routing key: config.users.<user_uuid>.forwards.<forward_name>.updated

• required ACL: events.config.users.<user_uuid>.forwards.<forward_name>.updated

332 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• event specific data: a dictionary with 3 keys

– user_uuid: the user uuid

– enabled: the state of the forward

– destination: the destination of the forward

Example:

{
"name": "users_forwards_busy_updated",
"required_acl": "events.config.users.a1223fe6-bff8-4fb6-a982-f9157dea5094.forwards.busy.updated",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"user_uuid": "a1223fe6-bff8-4fb6-a982-f9157dea5094",
"enabled": true
"destination": "1234"

}
}

users_services_<service_name>_updated

The users_services_<service_name>_updated is sent when a user changes his service using REST API.

• service_name:

– dnd

– incallfilter

• routing key: config.users.<user_uuid>.services.<service_name>.updated

• required ACL: events.config.users.<user_uuid>.services.<service_name>.updated

• event specific data: a dictionary with 2 keys

– user_uuid: the user uuid

– enabled: the state of the service

Example:

{
"name": "users_services_dnd_updated",
"required_acl": "events.config.users.a1223fe6-bff8-4fb6-a982-f9157dea5094.services.dnd.updated",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"user_uuid": "a1223fe6-bff8-4fb6-a982-f9157dea5094",
"enabled": true

}
}

service_registered_event

The service_registered_event is sent when a service is started.

• routing key: service.registered.<service_name>

• event specific data: a dictionary with 5 keys

– service_name: The name of the started service

– service_id: The consul ID of the started service

– address: The advertised address of the started service

1.12. API and SDK 333

XiVO Documentation, Release 16.08

– port: The advertised port of the started service

– tags: The advertised Consul tags of the started service

Example:

{
"name": "service_registered_event",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"service_name": "xivo-ctid",
"service_id": "8e58d2a7-cfed-4c2e-ac72-14e0b5c26dc2",
"address": "192.168.1.42",
"port": 9495,
"tags": ["xivo-ctid", "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3", "Québec"]

}
}

service_deregistered_event

The service_deregistered_event is sent when a service is stopped.

• routing key: service.deregistered.<service_name>

• event specific data: a dictionary with 3 keys

– service_name: The name of the stopped service

– service_id: The consul ID of the stopped service

– tags: The advertised Consul tags of the stopped service

Example:

{
"name": "service_deregistered_event",
"origin_uuid": "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3",
"data": {

"service_name": "xivo-ctid",
"service_id": "8e58d2a7-cfed-4c2e-ac72-14e0b5c26dc2",
"tags": ["xivo-ctid", "ca7f87e9-c2c8-5fad-ba1b-c3140ebb9be3", "Québec"]

}
}

1.12.2 Queue logs

Queue logs are events logged by Asterisk in the queue_log table of the asterisk database. Queue logs are used to
generate XiVO call center statistics.

Queue log sample

Agent callback login

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-03 15:27:23.896208 | 1341343640.4 | NONE | Agent/3001 | AGENTCALLBACKLOGIN | 1002@pcm-dev | | | |

334 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Agent callback logoff

Agent/3001 is logged in queues q1 and q2.

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-03 15:28:07.348244 | NONE | q2 | Agent/3001 | UNPAUSE | | | | |
2012-07-03 15:28:07.346320 | NONE | q1 | Agent/3001 | UNPAUSE | | | | |
2012-07-03 15:28:07.327425 | NONE | NONE | Agent/3001 | UNPAUSEALL | | | | |
2012-07-03 15:28:06.249357 | NONE | NONE | Agent/3001 | AGENTCALLBACKLOGOFF | 1002@pcm-dev | 43 | CommandLogoff | |

Call on a Queue with join empty conditions met

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:27:55.640421 | 1341401275.9 | q1 | NONE | JOINEMPTY | | | | |

Enter the queue and get answered by an agent

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:33:23.085718 | 1341401601.24 | q1 | Agent/3001 | CONNECT | 2 | 1341401601.27 | 1 | |
2012-07-04 07:33:21.165823 | 1341401601.24 | q1 | NONE | ENTERQUEUE | | 1000 | 1 | |

Agent or caller ends the call after 12 seconds

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:37:46.601754 | 1341401851.34 | q1 | Agent/3001 | COMPLETEAGENT | 2 | 12 | 1 | |

Call on a full queue

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:40:17.339945 | 1341402016.44 | q1 | NONE | FULL | | | | |

Call on a closed queue

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
---------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:48:03.455999 | 1341402482.49 | q1 | NONE | CLOSED | | | | |

Caller abandon before an answer

time | callid | queuename | agent | event | data1 | data2 | data3 | data4 | data5
----------------------------+-----------------+-----------+------------+---------------------+---------------------+-----------------+---------------+-------+-------
2012-07-04 07:49:52.939802 | 1341402586.51 | q1 | NONE | ABANDON | 1 | 1 | 6 | |

1.12.3 REST API

The XiVO REST APIs are the privileged way to programmatically interact with XiVO.

1.12. API and SDK 335

XiVO Documentation, Release 16.08

Reference

xivo-agentd REST API

You can view the API documentation at http://api.xivo.io.

Changelog

15.19

• Token authentication is now required for all routes, i.e. it is not possible to interact with xivo-agentd without
a xivo-auth authentication token.

15.18

• xivo-agentd now uses HTTPS instead of HTTP.

15.15

• The resources returning agent statuses, i.e.:

– GET /agents

– GET /agents/by-id/{agent_id}

– GET /agents/by-number/{agent_number}

are now returning an additional argument named “state_interface”, which is “the interface (e.g. SIP/alice)
that is used to determine if an agent is in use or not”.

xivo-confd REST API

Note: REST API 1.1 for confd is currently evolving. New features and small fixes are regularly being added over
time. We invite the reader to periodically check the changelog for an update on new features and changes.

xivo-confd REST API changelog

16.06

• A new API for initializing a XiVO (passing the wizard):

– GET /1.1/wizard

– POST /1.1/wizard

– GET /1.1/wizard/discover

• A new API for associating a user with an entity has been added:

– GET /1.1/users/<user_id>/entities

– PUT /1.1/users/<user_id>/entities/<entity_id>

336 Chapter 1. Table of Contents

http://api.xivo.io

XiVO Documentation, Release 16.08

16.05

• A new API for associating a user with a call permission has been added:

– GET /1.1/users/<user_id>/callpermissions

– PUT /1.1/users/<user_id>/callpermissions/<call_permission_id>

– DELETE /1.1/users/<user_id>/callpermissions/<call_permission_id>

– GET /1.1/callpermissions/<call_permission_id>/users

• Two new parameters have been added to the users resource:

– call_permission_password

– enabled

• A new API for user’s forwards has been added:

– PUT /1.1/users/<user_id>/forwards

• SIP endpoint: allow and disallow options are not split into multiple options anymore.

• SCCP endpoint: allow and disallow options are not split into multiple options anymore.

16.04

• The summary view has been added to /users (GET /users?view=summary)

• A new API for user’s services has been added:

– GET /1.1/users/<user_id>/services

– GET /1.1/users/<user_id>/services/<service_name>

– PUT /1.1/users/<user_id>/services/<service_name>

• A new API for user’s forwards has been added:

– GET /1.1/users/<user_id>/forwards

– GET /1.1/users/<user_id>/forwards/<forward_name>

– PUT /1.1/users/<user_id>/forwards/<forward_name>

• GET /1.1/users/export now requires the following header for CSV output:

Accept: text/csv; charset=utf-8

• Added call permissions endpoints:

– GET /1.1/callpermissions

– POST /1.1/callpermissions

– GET /1.1/callpermissions/<callpermission_id>

– PUT /1.1/callpermissions/<callpermission_id>

– DELETE /1.1/callpermissions/<callpermission_id>

16.03

• Added switchboard endpoints:

– GET /1.1/switchboards

– GET /1.1/switchboards/<switchboard_id>/stats

• A new API for associating a line with a device has been added:

– PUT /1.1/lines/<line_id>/devices/<device_id>

1.12. API and SDK 337

XiVO Documentation, Release 16.08

– DELETE /1.1/lines/<line_id>/devices/<device_id>

• The following URLs have been deleted. Please use the new API instead:

– GET /1.1/devices/<device_id>/associate_line/<line_id>

– GET /1.1/devices/<device_id>/dissociate_line/<line_id>

16.02

• Added users endpoints in REST API:

– GET /1.1/users/<user_uuid>/lines/main/associated/endpoints/sip

16.01

• The SIP API has been improved. options now accepts any extra parameter. However, due to certain
database limitations, parameters that appear in Supported parameters on SIP endpoints may only appear
once in the list. This limitation will be removed in future versions.

• A new API for custom endpoints has been added: /1.1/endpoints/custom

• A new API for associating custom endpoints has been added:
/1.1/lines/<line_id>/endpoints/custom/<endpoint_id>

15.20

• A new API for mass updating users has been added: PUT /1.1/users/import

• A new API for exporting users has been added: GET /1.1/users/export

15.19

• A new API for mass importing users has been added: POST /1.1/users/import

• The following fields have been added to the /users API:

– supervision_enabled

– call_tranfer_enabled

– ring_seconds

– simultaneous_calls

15.18

• Ports 50050 and 50051 have been removed. Please use 9486 and 9487 instead

• Added sccp endpoints in REST API:

– GET /1.1/endpoints/sccp

– POST /1.1/endpoints/sccp

– DELETE /1.1/endpoints/sccp/<sccp_id>

– GET /1.1/endpoints/sccp/<sccp_id>

– PUT /1.1/endpoints/sccp/<sccp_id>

– GET /1.1/endpoints/sccp/<sccp_id>/lines

– GET /1.1/lines/<line_id>/endpoints/sccp

– DELETE /1.1/lines/<line_id>/endpoints/sccp/<sccp_id>

– PUT /1.1/lines/<line_id>/endpoints/sccp/<sccp_id>

338 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Added lines endpoints in REST API:

– GET /1.1/lines/<line_id>/users

15.17

• A new API for SIP endpoints has been added. Consult the documentation on http://api.xivo.io for further
details.

• The /lines_sip API has been deprecated. Please use /lines and /endpoints/sip instead.

• Due to certain limitations in the database, only a limited number of optional parameters can be configured.
This limitation will be removed in future releases. Supported parameters are listed further down.

• Certain fields in the /lines API have been modified. List of fields are further down

Fields modified in the /linesAPI

Name Replaced by Editable ? Required ?
id no
device_id no
name no
protocol no
device_slot position no
provisioning_extension provisioning_code no
context yes yes
provisioning_code yes
position yes
caller_id_name yes
caller_id_num yes

Supported parameters on SIP endpoints

• md5secret

• language

• accountcode

• amaflags

• allowtransfer

• fromuser

• fromdomain

• subscribemwi

• buggymwi

• call-limit

• callerid

• fullname

• cid-number

• maxcallbitrate

• insecure

• nat

• promiscredir

• usereqphone

• videosupport

1.12. API and SDK 339

http://api.xivo.io

XiVO Documentation, Release 16.08

• trustrpid

• sendrpid

• allowsubscribe

• allowoverlap

• dtmfmode

• rfc2833compensate

• qualify

• g726nonstandard

• disallow

• allow

• autoframing

• mohinterpret

• useclientcode

• progressinband

• t38pt-udptl

• t38pt-usertpsource

• rtptimeout

• rtpholdtimeout

• rtpkeepalive

• deny

• permit

• defaultip

• setvar

• port

• regexten

• subscribecontext

• fullcontact

• vmexten

• callingpres

• ipaddr

• regseconds

• regserver

• lastms

• parkinglot

• protocol

• outboundproxy

• transport

• remotesecret

• directmedia

340 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• callcounter

• busylevel

• ignoresdpversion

• session-timers

• session-expires

• session-minse

• session-refresher

• callbackextension

• timert1

• timerb

• qualifyfreq

• contactpermit

• contactdeny

• unsolicited_mailbox

• use-q850-reason

• encryption

• snom-aoc-enabled

• maxforwards

• disallowed-methods

• textsupport

15.16

• The parameter skip is now deprecated. Use offset instead for:

– GET /1.1/devices

– GET /1.1/extensions

– GET /1.1/voicemails

– GET /1.1/users

• The users resource can be referred to by uuid

– GET /1.1/users/<uuid>

– PUT /1.1/users/<uuid>

– DELETE /1.1/users/<uuid>

15.15

• The field enabled has been added to the voicemail model

• A line is no longer required when associating a voicemail with a user

• Voicemails can now be edited even when they are associated to a user

1.12. API and SDK 341

XiVO Documentation, Release 16.08

15.14

• All optional fields on a user are now always null (sometimes they were empty strings)

• The caller id is no longer automatically updated when the firstname or lastname is modified. You must
update the caller id yourself if you modify the user’s name.

• Caller id will be generated if and only if it does not exist when creating a user.

14.16

• Association user-voicemail, when associating a voicemail whose id does not exist:

– before: error 404

– after: error 400

14.14

• Association line-extension, a same extension can not be associated to multiple lines

14.13

• Resource line, field provisioning_extension: type changed from int to string

REST API 1.1 examples

Create User for a line and a exten

Add user, line and exten with association

Add voicemail with association

Choice and add CTI profile with association

Multiple users for a line association

API reference API documentation is available on http://api.xivo.io. This section contains extended documenta-
tion for certain aspects of the API.

Function Keys Function keys can be used as shortcuts for dialing a number, or accomplishing other menial
tasks, by pushing a button on the phone. A function key’s action is determined by its destination.

Function keys can be added directly on a user, or in a template. Templates are useful for creating a set of common
function keys that can be used by the same group of people.

This page only describes the data models used by the REST API. Consult the API documentation for further
details on URLs.

Function Key Template

342 Chapter 1. Table of Contents

http://api.xivo.io
http://api.xivo.io

XiVO Documentation, Release 16.08

Fig. 1.101: Download source. (source)

1.12. API and SDK 343

XiVO Documentation, Release 16.08

Fig. 1.102: Download source. (source)

Fig. 1.103: Download source. (source)

344 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.104: Download source. (source)

1.12. API and SDK 345

XiVO Documentation, Release 16.08

Parameters

Field Type Re-
quired

Description

name string No A name for the template.
keys Function

Key
No A collection of function keys under the form {"position":

"funckey"}. See the example for more details.

Example
{

"name": "Example template",
"keys": {

"1": {
"destination": {

"type": "user",
"user_id": 34

}
},
"2": {

"blf": true,
"label": "Call mom",
"destination": {

"type": "custom",
"exten": "5551234567"

}
}

}
}

Function Key

Description

Field Type Required Description
blf boolean No Turn on BLF when there is activity on the destination
label string No Label to display next to the function key
destination Destination Yes Destination to call

Example
{

"blf": True,
"label": "Call john",
"destination": {

"type": "user",
"user_id": 34

}
}

Destination A destination determines the number to dial when using a function key. Destinations are composed
of a parameter named type and any additional parameters required by its type.

Available destination types:

agent An agent

bsfilter Boss/Secretary filter

conference Conference room

custom A custom number to dial

forward Forward a call towards another number

group A group

346 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

onlinerec Record a conversation during a call

paging A paging

park Park a call

park_position Pick up a parked call

queue Call queue

service A call service

transfer Transfer a call

user A User

Here are the parameters required for each destination:

Agent Field Type Value
agent_id numeric Agents’s id

BSFilter Field Type Value
filter_member_id numeric ID of the filter member

Conference Field Type Value
conference_id numeric Conference’s id

Custom Field Type Value
exten string Number to dial

Forward
Field Type Value
forward string Type of forward. Possible values: busy, noanswer, unconditional
exten string Number to dial (optional)

Group Field Type Value
group_id numeric Group’s id

Online call recording No parameters are required for this destination

Paging Field Type Value
paging_id numeric Pagings’s id

Parking No parameters are required for this destination

Parking Position Field Type Value
position numeric string Position of the parking to pick up

Queue Field Type Value
queue_id numeric User’s id

1.12. API and SDK 347

XiVO Documentation, Release 16.08

Service Field Type Value
service string Name of the service

Currently supported services:

phonestatus Phone Status

recsnd Sound Recording

callrecord Call recording

incallfilter Incoming call filtering

enablednd Enable “Do not disturb” mode

pickup Group Interception

calllistening Listen to online calls

directoryaccess Directory access

fwdundoall Disable all forwaring

enablevm Enable Voicemail

vmusermsg Consult the Voicemail

vmuserpurge Delete messages from voicemail

Transfer Field Type Value
transfer string Type of transfer. Possible values: blind, attended

User Field Type Value
user_id numeric User’s id

CSV User Import Users and common related resources can be imported onto a XiVO server by sending a CSV
file with a predefined set of fields.

This page only documents additional notes useful for API users. Consult the API documentation for more details.

Uploading files Files may be uploaded as usual through the web interface, or from a console by using HTTP
utilities and the REST API. When uploading through the API, the header Content-Type: text/csv charset=utf-8
must be set and the CSV data must be sent in the body of the request. A file may be uploaded using curl as
follows:

curl -k -H "Content-Type: text/csv; charset=utf-8" -u username:password --data-binary "@file.csv" https://xivo:9486/1.1/users/import

The response can be reindented in a more readable format by piping the output through python -m json.tool in the
following way:

curl (...) | python -m json.tool

Migration from 1.0 The API version 1.0 is no longer supported and has been removed. In most cases, code that
used the old API can be migrated to version 1.1 without much hassle by updating the URL. For example, in 1.0,
the URL to list users was:

/1.0/users/

In 1.1, it is::

/1.1/users

348 Chapter 1. Table of Contents

http://api.xivo.io

XiVO Documentation, Release 16.08

Please note that there are no trailing slashes in URLs for version 1.1.

For further details consult the documentation at http://api.xivo.io

xivo-ctid-ng REST API

Note: The HTTP API 1.0 for xivo-ctid-ng is currently evolving. New features and small fixes are regularly being
added over time. We invite the reader to periodically check the changelog for an update on new features and
changes.

xivo-ctid-ng HTTP API changelog

16.08

• A new API for making calls from the authenticated user:

– POST /1.0/users/me/calls

• A new API for sending chat messages:

– POST /1.0/chats

– POST /1.0/users/me/chats

• A new parameter for transfer creation (POST /1.0/transfers):

– variables

• A new API for making transfers from the authenticated user:

– POST /1.0/users/me/transfers

API reference API documentation is available on http://api.xivo.io.

xivo-provd REST API

This section describes the REST API provided by the xivo-provd application.

If you want to interact with the REST API of the xivo-provd daemon that is executing as part of XiVO, you
should be careful on which operation you are doing as to not cause stability problem to other parts of the XiVO
ecosystem. Mostly, this means being careful when editing or deleting devices and configs.

By default, the REST API of xivo-provd is accessible only from localhost on port 8666. No authentication is
required.

Warning: Major changes could happen to this API.

API The description of the API has been split into these sections:

Provd Management

1.12. API and SDK 349

http://api.xivo.io
http://api.xivo.io

XiVO Documentation, Release 16.08

Get the Provd Manager The provd manager resource represents the main entry point to the xivo-provd REST
API.

It links to the following resources:

• The dev relation links to a device manager.

• The cfg relation links to a config manager.

• The pg relation links to a plugin manager.

• The srv.configure relation links to the provd manager configuration service.

Query
GET /provd

Example request
GET /provd HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{
"href": "/provd/dev_mgr",
"rel": "dev"

},
{

"href": "/provd/cfg_mgr",
"rel": "cfg"

},
{

"href": "/provd/pg_mgr",
"rel": "pg"

},
{

"href": "/provd/configure",
"rel": "srv.configure"

}
]

}

Devices Management

Get the Device Manager The device manager links to the following resources:

• The dev.synchronize relation links to the device synchronization service.

• The dev.reconfigure relation links to the device reconfiguration service.

• The dev.dhcpinfo relation links to the device DHCP information service.

• The dev.devices relation links to the list of devices.

350 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Query
GET /provd/dev_mgr

Example request
GET /provd/dev_mgr HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{
"href": "/provd/dev_mgr/synchronize",
"rel": "dev.synchronize"

},
{

"href": "/provd/dev_mgr/reconfigure",
"rel": "dev.reconfigure"

},
{

"href": "/provd/dev_mgr/dhcpinfo",
"rel": "dev.dhcpinfo"

},
{

"href": "/provd/dev_mgr/devices",
"rel": "dev.devices"

}
]

}

List Devices

Query
GET /provd/dev_mgr/devices

Query Parameters

Field Description
q A selector, encoded in JSON, describing which device should be returned. All devices are returned if

not specified. Example: q={"ip":"10.34.1.119"}
fields A list of fields, separated by comma. Example: fields=mac,ip
skip An integer specifing the number of devices to skip. Example: skip=10
sort The key on which to sort the results. Example: sort=id
sort_ordThe order of sort; either ASC or DESC.

Example request
GET /provd/dev_mgr/devices HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response

1.12. API and SDK 351

XiVO Documentation, Release 16.08

HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"devices": [

{
"added": "auto",
"config": "38e5e08ffe804b468f5aa53b9536bb25",
"configured": true,
"description": "",
"id": "38e5e08ffe804b468f5aa53b9536bb25",
"ip": "10.34.1.122",
"mac": "00:08:5d:33:e5:76",
"model": "6731i",
"plugin": "xivo-aastra-3.3.1-SP2",
"remote_state_sip_username": "je5qtq",
"vendor": "Aastra",
"version": "3.3.1.2235"

}
]

}

Create a Device

Query
POST /provd/dev_mgr/devices

Example request
POST /provd/dev_mgr/devices HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"device": {

"ip": "192.168.1.1",
"mac": "00:11:22:33:44:55",
"plugin": "xivo-aastra-3.3.1-SP2"

}
}

Example response
HTTP/1.1 201 Created
Content-Type: application/vnd.proformatique.provd+json
Location: /provd/dev_mgr/devices/68b10c99945b4fb889f22a7559fc3271

{"id": "68b10c99945b4fb889f22a7559fc3271"}

If the id field is not given, then an ID is automatically generated by the server.

Get a Device

Query
GET /provd/dev_mgr/devices/<device_id>

352 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Example request
GET /provd/dev_mgr/devices/68b10c99945b4fb889f22a7559fc3271 HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"device": {

"added": "auto",
"config": "38e5e08ffe804b468f5aa53b9536bb25",
"configured": true,
"description": "",
"id": "38e5e08ffe804b468f5aa53b9536bb25",
"ip": "10.34.1.122",
"mac": "00:08:5d:33:e5:76",
"model": "6731i",
"plugin": "xivo-aastra-3.3.1-SP2",
"remote_state_sip_username": "je5qtq",
"vendor": "Aastra",
"version": "3.3.1.2235"

}
}

Update a Device

Query
PUT /provd/dev_mgr/devices/<device_id>

Example request
PUT /provd/dev_mgr/devices/68b10c99945b4fb889f22a7559fc3271 HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"device": {

"added": "auto",
"config": "38e5e08ffe804b468f5aa53b9536bb25",
"configured": true,
"description": "",
"id": "38e5e08ffe804b468f5aa53b9536bb25",
"ip": "10.34.1.122",
"mac": "00:08:5d:33:e5:76",
"model": "6731i",
"plugin": "xivo-aastra-3.4",
"remote_state_sip_username": "je5qtq",
"vendor": "Aastra",
"version": "3.3.1.2235"

}
}

Example response
HTTP/1.1 204 No Content

1.12. API and SDK 353

XiVO Documentation, Release 16.08

Delete a Device

Query
DELETE /provd/dev_mgr/devices/<device_id>

Example request
DELETE /provd/dev_mgr/devices/68b10c99945b4fb889f22a7559fc3271 HTTP/1.1
Host: xivoserver

Example response
HTTP/1.1 204 No Content

Synchronize a Device

Query
POST /provd/dev_mgr/synchronize

Example request
POST /provd/dev_mgr/synchronize HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "d035bccaf0dd4a8396fc57a3329ca0a4"

}

Example response
HTTP/1.1 201 Created
Location: /provd/dev_mgr/synchronize/42

The URI returned in the Location header points to an operation in progress resource.

Reconfigure a Device

Query
POST /provd/dev_mgr/reconfigure

Errors Error code Error message Description
400 invalid device ID

Example request
POST /provd/dev_mgr/reconfigure HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "d035bccaf0dd4a8396fc57a3329ca0a4"

}

354 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Example response
HTTP/1.1 204 No Content

Push DHCP Request Information

Query
POST /provd/dev_mgr/dhcpinfo

Example request
POST /provd/dev_mgr/dhcpinfo HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"dhcp_info": {

"ip": "192.168.1.100",
"mac": "00:11:22:33:44:55",
"op": "commit",
"options": [

"06066.6f.6f.62.61.72.a"
]

}
}

Example response
HTTP/1.1 204 No Content

Configs Management

Get the Config Manager The config manager links to the following resources:

• The cfg.configs relation links to the list of configs.

• The cfg.autocreate relation links to the config autocreate service.

Query
GET /provd/cfg_mgr

Example request
GET /provd/cfg_mgr HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{
"href": "/provd/cfg_mgr/configs",

1.12. API and SDK 355

XiVO Documentation, Release 16.08

"rel": "cfg.configs"
},
{

"href": "/provd/cfg_mgr/autocreate",
"rel": "cfg.autocreate"

}
]

}

List Configs

Query
GET /provd/cfg_mgr/configs

Query Parameters These are the same parameters as for the list devices action.

Example request
GET /provd/cfg_mgr/configs HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"configs": [

{
"configdevice": "defaultconfigdevice",
"deletable": true,
"id": "38e5e08ffe804b468f5aa53b9536bb25",
"parent_ids": [

"base",
"defaultconfigdevice"

],
"raw_config": {

"X_key": "",
"exten_dnd": "*25",
"exten_fwd_busy": "*23",
"exten_fwd_disable_all": "*20",
"exten_fwd_no_answer": "*22",
"exten_fwd_unconditional": "*21",
"exten_park": null,
"exten_pickup_call": "*8",
"exten_pickup_group": null,
"exten_voicemail": "*98",
"funckeys": {

"1": {
"label": "",
"line": 1,
"type": "speeddial",
"value": "1005"

}
},
"protocol": "SIP",
"sip_dtmf_mode": "SIP-INFO",
"sip_lines": {

356 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"1": {
"auth_username": "je5qtq",
"display_name": "El\u00e8s 01",
"number": "1001",
"password": "T2S7C0",
"proxy_ip": "10.34.1.11",
"registrar_ip": "10.34.1.11",
"username": "je5qtq"

}
}

}
}

]
}

Create a Config

Query
POST /provd/cfg_mgr/configs

Example request
POST /provd/cfg_mgr/configs HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"config": {

"parent_ids": [
"base"

],
"raw_config": {

"sip": {
"lines": {

"1": {
"auth_username": "100",
"display_name": "Foo",
"password": "100",
"username": "100"

}
}

}
}

}
}

Example response
HTTP/1.1 201 Created
Content-Type: application/vnd.proformatique.provd+json
Location: /provd/cfg_mgr/configs/77839d0f05c84662864b0ae5c27b33e4

{"id": "77839d0f05c84662864b0ae5c27b33e4"}

If the id field is not given, then an ID id automatically generated by the server.

Get a Config

1.12. API and SDK 357

XiVO Documentation, Release 16.08

Query
GET /provd/cfg_mgr/configs/<config_id>

Example request
GET /provd/cfg_mgr/configs/77839d0f05c84662864b0ae5c27b33e4 HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"config": {

"id": "77839d0f05c84662864b0ae5c27b33e4",
"parent_ids": [

"base"
],
"raw_config": {

"sip": {
"lines": {

"1": {
"auth_username": "100",
"display_name": "Foo",
"password": "100",
"username": "100"

}
}

}
}

}
}

Get a Raw Config

Query
GET /provd/cfg_mgr/configs/<config_id>/raw

Example request
GET /provd/cfg_mgr/configs/77839d0f05c84662864b0ae5c27b33e4/raw HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"raw_config": {

"X_xivo_phonebook_ip": "10.34.1.11",
"http_port": 8667,
"ip": "10.34.1.11",
"ntp_enabled": true,
"ntp_ip": "10.34.1.11",
"sip": {

358 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"lines": {
"1": {

"auth_username": "100",
"display_name": "John",
"password": "100",
"username": "100"

}
}

},
"tftp_port": 69

}
}

Update a Config

Query
PUT /provd/cfg_mgr/configs/<config_id>

Example request
PUT /provd/cfg_mgr/configs/77839d0f05c84662864b0ae5c27b33e4 HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"config": {

"id": "77839d0f05c84662864b0ae5c27b33e4",
"parent_ids": [

"base"
],
"raw_config": {

"sip": {
"lines": {

"1": {
"auth_username": "100",
"display_name": "John",
"password": "100",
"username": "100"

}
}

}
}

}
}

Example response
HTTP/1.1 204 No Content

Delete a Config

Query
DELETE /provd/cfg_mgr/configs/<config_id>

Example request

1.12. API and SDK 359

XiVO Documentation, Release 16.08

DELETE /provd/cfg_mgr/configs/77839d0f05c84662864b0ae5c27b33e4
Host: xivoserver

Example response
HTTP/1.1 204 No Content

Autocreate a Config This service is used to create a new config from the config that has the autocreate role.

Query
POST /provd/cfg_mgr/autocreate

Example request
POST /provd/cfg_mgr/autocreate HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{}

Example response
HTTP/1.1 201 Created
Content-Type: application/vnd.proformatique.provd+json
Location: /provd/cfg_mgr/configs/autoprov1411400365

{"id":"autoprov1411400365"}

Plugins Management

Get the Plugin Manager The plugin manager links to the following resources:

• The srv.install relation links to the plugin manager installation service. This installation service
permits installing/uninstalling plugins.

• The pg.plugins relation links to the list of plugins.

• The pg.reload relation links to the plugin reload service.

Query
GET /provd/pg_mgr

Example request
GET /provd/pg_mgr HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{

360 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"href": "/provd/pg_mgr/install",
"rel": "srv.install"

},
{

"href": "/provd/pg_mgr/plugins",
"rel": "pg.plugins"

},
{

"href": "/provd/pg_mgr/reload",
"rel": "pg.reload"

}
]

}

List Plugins List the installed plugins.

If you want to install/uninstall plugins, you need to go trough the plugin installation service.

Query
GET /provd/pg_mgr/plugins

Example request
GET /provd/pg_mgr/plugins HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"plugins": {

"xivo-aastra-3.3.1-SP2": {
"links": [

{
"href": "/provd/pg_mgr/plugins/xivo-aastra-3.3.1-SP2",
"rel": "pg.plugin"

}
]

},
"xivo-cisco-sccp-9.0.3": {

"links": [
{

"href": "/provd/pg_mgr/plugins/xivo-cisco-sccp-9.0.3",
"rel": "pg.plugin"

}
]

}
}

}

Get a Plugin The plugin links to the following resources:

• The pg.info relation links to the plugin information.

• The srv.install relation links to the plugin installation service. Plugins usually provided this service
to install/uninstall firmware and language files.

1.12. API and SDK 361

XiVO Documentation, Release 16.08

Query
GET /provd/pg_mgr/plugins/<plugin_id>

Example request
GET /provd/pg_mgr/plugins/xivo-aastra-3.3.1-SP2 HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{
"href": "/provd/pg_mgr/plugins/xivo-aastra-3.3.1-SP2/info",
"rel": "pg.info"

},
{

"href": "/provd/pg_mgr/plugins/xivo-aastra-3.3.1-SP2/install",
"rel": "srv.install"

}
]

}

Get Information of a Plugin

Query
GET /provd/pg_mgr/plugins/<plugin_id>/info

Example request
GET /provd/pg_mgr/plugins/xivo-aastra-3.3.1-SP2/info HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"plugin_info": {

"capabilities": {
"Aastra, 6730i, 3.3.1.5089": {

"sip.lines": 6
},
"Aastra, 6731i, 3.3.1.2235": {

"sip.lines": 6,
"switchboard": true

},
"Aastra, 6735i, 3.3.1.5089": {

"sip.lines": 9
},
"Aastra, 6737i, 3.3.1.5089": {

"sip.lines": 9
},

362 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"Aastra, 6739i, 3.3.1.2235": {
"sip.lines": 9

},
"Aastra, 6753i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 6755i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 6757i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 9143i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 9480i, 3.3.1.2235": {

"sip.lines": 9
}

},
"description": "Plugin for Aastra 6730i, 6731i, 6735i, 6737i, 6739i, 6753i, 6755i, 6757i, 6757i CT, 9143i, 9480i, 9480i CT in version 3.3.1 SP2.",
"version": "1.1"

}
}

Reload a Plugin Reload the given plugin. This is mostly useful during plugin development, after changing the
code of the plugin, instead of restarting the xivo-provd application.

Query
POST /provd/pg_mgr/reload

Example request
POST /provd/pg_mgr/reload HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "xivo-aastra-3.3.1-SP2"

}

Example response
HTTP/1.1 204 No Content

General Resources This section describes the resources that are available from more than one URI or are
generic enough to not fit in a more specific section.

Operation In Progress This resource represents an operation in progress and is used to follow the progress of
an underlying operation. Said differently, it is a monitor on an operation that can change over time.

Get Current Status

1.12. API and SDK 363

XiVO Documentation, Release 16.08

Query
GET <uri>

Example request
GET <uri> HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"status": "progress"

}

The status field describe the current status of the operation. The format is
[label|]state[;current[/end]](\(sub_oips\))*. Here’s some examples:

• progress

• download|progress

• download|progress;10

• download|progress;10/100

• download|progress(file_1|progress;20/100)(file_2|waiting;0/50)

• download|progress;20/150(file_1|progress)(file_2|waiting)

• op|progress(op1|progress(op11|progress)(op12|waiting))(op2|progress)

The state of an operation is either waiting, progress, success or fail.

Delete Delete the “operation in progress” resource.

This does not cancel the underlying operation; it only deletes the monitor. Every monitor that is created should be
deleted, else they won’t be freed by the process and they will accumulate, taking memory.

Query
DELETE <uri>

Example request
DELETE <uri> HTTP/1.1
Host: xivoserver

Example response
HTTP/1.1 204 No Content

Configuration Service

Get the Configuration

364 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Query
GET <uri>

Example request Example request for the configuration service of the provd manager.

GET /provd/configure HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"params": [

{
"description": "The plugins repository URL",
"id": "plugin_server",
"links": [

{
"href": "/provd/configure/plugin_server",
"rel": "srv.configure.param"

}
],
"value": "http://provd.xivo.fr/plugins/1/stable"

},
{

"description": "The proxy for HTTP requests. Format is \"http://[user:password@]host:port\"",
"id": "http_proxy",
"links": [

{
"href": "/provd/configure/http_proxy",
"rel": "srv.configure.param"

}
],
"value": null

},
{

"description": "The proxy for FTP requests. Format is \"http://[user:password@]host:port\"",
"id": "ftp_proxy",
"links": [

{
"href": "/provd/configure/ftp_proxy",
"rel": "srv.configure.param"

}
],
"value": null

},
{

"description": "The proxy for HTTPS requests. Format is \"host:port\"",
"id": "https_proxy",
"links": [

{
"href": "/provd/configure/https_proxy",
"rel": "srv.configure.param"

}
],
"value": null

},
{

1.12. API and SDK 365

XiVO Documentation, Release 16.08

"description": "The current locale. Example: fr_FR",
"id": "locale",
"links": [

{
"href": "/provd/configure/locale",
"rel": "srv.configure.param"

}
],
"value": null

},
{

"description": "Set to 1 if all the devices are behind a NAT.",
"id": "NAT",
"links": [

{
"href": "/provd/configure/NAT",
"rel": "srv.configure.param"

}
],
"value": 0

}
]

}

Get the Value of a Parameter

Query
GET <uri>

Example request Example request for the NAT option of the configuration service of the provd entry point.

GET /provd/configure/NAT HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"param": {

"value": 0
}

}

Set the Value of a Parameter

Query
PUT <uri>

Example request Example request for the NAT option of the configuration service of the provd manager.

PUT /provd/configure/NAT HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

366 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

{
"param": {

"value": 1
}

}

Example response
HTTP/1.1 204 No Content
Content-Type: application/vnd.proformatique.provd+json

Installation Service

Get the Installation Service

Query
GET <uri>

Example request Example request for the installation service of the plugin manager.

GET /provd/pg_mgr/install HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"links": [

{
"href": "/provd/pg_mgr/install/install",
"rel": "srv.install.install"

},
{

"href": "/provd/pg_mgr/install/uninstall",
"rel": "srv.install.uninstall"

},
{

"href": "/provd/pg_mgr/install/installed",
"rel": "srv.install.installed"

},
{

"href": "/provd/pg_mgr/install/installable",
"rel": "srv.install.installable"

},
{

"href": "/provd/pg_mgr/install/upgrade",
"rel": "srv.install.upgrade"

},
{

"href": "/provd/pg_mgr/install/update",
"rel": "srv.install.update"

}
]

}

1.12. API and SDK 367

XiVO Documentation, Release 16.08

The upgrade and update services are optional and not all installation service provide them.

Install a Package

Query
POST <uri>

Example request Example request for the installation service of the plugin manager.

POST /provd/pg_mgr/install/install HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "xivo-polycom-4.0.4"

}

Example response
HTTP/1.1 201 Created
Location: /provd/pg_mgr/install/install/1
Content-Type: application/vnd.proformatique.provd+json

The URI returned in the Location header points to an operation in progress resource.

Uninstall a Package

Query
POST <uri>

Example request Example request for the installation service of the plugin manager.

POST /provd/pg_mgr/install/uninstall HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "xivo-polycom-4.0.4"

}

Example response
HTTP/1.1 204 No Content
Content-Type: application/vnd.proformatique.provd+json

Upgrade a Package

Query
POST <uri>

Example request Example request for the installation service of the plugin manager.

368 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

POST /provd/pg_mgr/install/upgrade HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{
"id": "xivo-polycom-4.0.4"

}

Example response
HTTP/1.1 201 Created
Location: /provd/pg_mgr/install/upgrade/1
Content-Type: application/vnd.proformatique.provd+json

The URI returned in the Location header points to an operation in progress resource.

Update the List of Installable Packages

Query
POST <uri>

Example request Example request for the installation service of the plugin manager.

POST /provd/pg_mgr/install/update HTTP/1.1
Host: xivoserver
Content-Type: application/vnd.proformatique.provd+json

{}

Example response
HTTP/1.1 201 Created
Location: /provd/pg_mgr/install/update/1
Content-Type: application/vnd.proformatique.provd+json

The URI returned in the Location header points to an operation in progress resource.

List Installable Packages

Query
GET <uri>

Example request Example request for the installation service of the plugin manager.

GET /provd/pg_mgr/install/installable HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"pkgs": {

"null": {

1.12. API and SDK 369

XiVO Documentation, Release 16.08

"capabilities": {
"*, *, *": {

"sip.lines": 0
}

},
"description": "Plugin that offers no configuration service and rejects TFTP/HTTP requests.",
"dsize": 1073,
"sha1sum": "90b2fb6c2b135a9d539488b6a85779dd95e0e876",
"version": "1.0"

},
"xivo-aastra-3.3.1-SP2": {

"capabilities": {
"Aastra, 6730i, 3.3.1.5089": {

"sip.lines": 6
},
"Aastra, 6731i, 3.3.1.2235": {

"sip.lines": 6,
"switchboard": true

},
"Aastra, 6735i, 3.3.1.5089": {

"sip.lines": 9
},
"Aastra, 6737i, 3.3.1.5089": {

"sip.lines": 9
},
"Aastra, 6739i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 6753i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 6755i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 6757i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 9143i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 9480i, 3.3.1.2235": {

"sip.lines": 9
}

},
"description": "Plugin for Aastra 6730i, 6731i, 6735i, 6737i, 6739i, 6753i, 6755i, 6757i, 6757i CT, 9143i, 9480i, 9480i CT in version 3.3.1 SP2.",
"dsize": 9397,
"sha1sum": "68dbed6afa87cf624a89166bdc6bdf7413cb84df",
"version": "1.1"

}
}

}

List Installed Packages

Query
GET <uri>

Example request Example request for the installation service of the plugin manager.

370 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

GET /provd/pg_mgr/install/installed HTTP/1.1
Host: xivoserver
Accept: application/vnd.proformatique.provd+json

Example response
HTTP/1.1 200 OK
Content-Type: application/vnd.proformatique.provd+json

{
"pkgs": {

"xivo-aastra-3.3.1-SP2": {
"capabilities": {

"Aastra, 6730i, 3.3.1.5089": {
"sip.lines": 6

},
"Aastra, 6731i, 3.3.1.2235": {

"sip.lines": 6,
"switchboard": true

},
"Aastra, 6735i, 3.3.1.5089": {

"sip.lines": 9
},
"Aastra, 6737i, 3.3.1.5089": {

"sip.lines": 9
},
"Aastra, 6739i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 6753i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 6755i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 6757i, 3.3.1.2235": {

"sip.lines": 9,
"switchboard": true

},
"Aastra, 9143i, 3.3.1.2235": {

"sip.lines": 9
},
"Aastra, 9480i, 3.3.1.2235": {

"sip.lines": 9
}

},
"description": "Plugin for Aastra 6730i, 6731i, 6735i, 6737i, 6739i, 6753i, 6755i, 6757i, 6757i CT, 9143i, 9480i, 9480i CT in version 3.3.1 SP2.",
"version": "1.1"

}
}

}

xivo-sysconfd REST API

This service provides a public API that can be used to change the configuration that are on a XiVO.

Warning: The 0.1 API is currently in development. Major changes could still happen and new resources will
be added over time.

1.12. API and SDK 371

XiVO Documentation, Release 16.08

API reference

Asterisk Voicemail

Delete voicemail

Query
GET /delete_voicemail

Parameters

Mandatory

name the voicemail name

Optional

context the voicemail context (default is ‘default’)

Errors Error code Error message Description
404 Not found The voicemail does not exist

Example requests
GET /delete_voicemail HTTP/1.1
Host: xivoserver
Accept: application/json

Example response
HTTP/1.1 200 OK
Content-Type: application/json

{
nothing

}

Common configuration

Apply configuration

Query
GET /commonconf_apply

Generate configuration

Query
POST /commonconf_generate

Dhcpd configuration

372 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Update configuration

Query
GET /dhcpd_update

Ethernet configuration

Discover interfaces

Query
GET /discover_netifaces

Example request
GET /discover_netifaces HTTP/1.1
Host: xivoserver
Accept: application/json

Example response
HTTP/1.1 200 OK
Content-Type: application/json
{

"lo":
{

"hwaddress": "00:00:00:00:00:00",
"typeid": 24,
"alias-raw-device": null,
"network": "127.0.0.0",
"family": "inet",
"physicalif": false,
"vlan-raw-device": null,
"vlanif": false,
"dummyif": false,
"mtu": 65536,
"broadcast": "127.255.255.255",
"hwtypeid": 772,
"netmask": "255.0.0.0",
"carrier": true,
"flags": 9,
"address": "127.0.0.1",
"vlan-id": null,
"type": "loopback",
"options": null,
"aliasif": false,
"name": "lo"

},
"eth0":
{

"alias-raw-device": null,
"family": "inet",
"hwaddress": "36:76:70:29:69:c2",
"vlan-id": null,
"network": "172.17.0.0",
"physicalif": false,
"vlan-raw-device": null,
"vlanif": false,
"type": "eth",

1.12. API and SDK 373

XiVO Documentation, Release 16.08

"aliasif": false,
"broadcast": "172.17.255.255",
"netmask": "255.255.0.0",
"address": "172.17.0.101",
"typeid": 6,
"name": "eth0",
"hwtypeid": 1,
"dummyif": false,
"mtu": 1500,
"carrier": true,
"flags": 3,
"options": null

}
}

Get interface

Query
GET /netiface/<interface>

Example request
GET /netiface/eth0 HTTP/1.1
Host: xivoserver
Content-Type: application/json

Example response
HTTP/1.1 200 OK
Content-Type: application/json
{

"eth0":
{

"alias-raw-device": null,
"family": "inet",
"hwaddress": "36:76:70:29:69:c2",
"vlan-id": null,
"network": "172.17.0.0",
"physicalif": false,
"vlan-raw-device": null,
"vlanif": false,
"type": "eth",
"aliasif": false,
"broadcast": "172.17.255.255",
"netmask": "255.255.0.0",
"address": "172.17.0.101",
"typeid": 6,
"name": "eth0",
"hwtypeid": 1,
"dummyif": false,
"mtu": 1500,
"carrier": true,
"flags": 3,
"options": null

}
}

Modify interface

374 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Description

Field Values Description
iface string Interface name like eth0
method list static or dhcp
address string
netmask string
broadcast string
gateway string
mtu int
auto boolean
up boolean
options list dns-search and dns-nameservers

Query
PUT /modify_physical_eth_ipv4

Example request
PUT /modify_physical_eth_ipv4 HTTP/1.1
Host: xivoserver
Content-Type: application/json
{

"ifname': "eth0",
"method': "dhcp",
"auto": "True"

}

Replace virtual interface

Query
PUT /replace_virtual_eth_ipv4

Example request
PUT /replace_virtual_eth_ipv4 HTTP/1.1
Host: xivoserver
Content-Type: application/json
{

"ifname": "eth0:0",
"new_ifname": "eth0:1",
"method": "dhcp",
"auto": "True"

}

Modify interface

Query
PUT /modify_eth_ipv4

Example request
PUT /modify_eth_ipv4 HTTP/1.1
Host: xivoserver
Content-Type: application/json
{

'ifname' : 'eth0'

1.12. API and SDK 375

XiVO Documentation, Release 16.08

'address': '192.168.0.1',
'netmask': '255.255.255.0',
'broadcast': '192.168.0.255',
'gateway': '192.168.0.254',
'mtu': 1500,
'auto': True,
'up': True,
'options': [['dns-search', 'toto.tld tutu.tld'],

['dns-nameservers', '127.0.0.1 192.168.0.254']]
}

Change state

Query
PUT /change_state_eth_ipv4

Example request
PUT /change_state_eth_ipv4 HTTP/1.1
Host: xivoserver
Content-Type: application/json
{

'ifname' : 'eth0',
'state': True

}

Delete interface ipv4

Query
GET /delete_eth_ipv4/<interface>

Example request
GET /delete_eth_ipv4/eth0 HTTP/1.1
Host: xivoserver
Content-Type: application/json

HA configuration

Get HA configuration

Query
GET /get_ha_config

Update HA configuration

Query
POST /update_ha_config

network configuration

376 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Get network configuration

Query
GET /network_config

Rename ethernet interface

Query
POST /rename_ethernet_interface

swap ethernet interface

Query
POST /swap_ethernet_interfaces

Routes

Query
POST /routes

OpenSSL configuration

List certificates

Query
GET /openssl_listcertificates

Get certificate infos

Query
GET /openssl_certificateinfos

Export public key

Query
GET /openssl_exportpubkey

Export SSL certificate

Query
GET /openssl_export

Create CA certificate

1.12. API and SDK 377

XiVO Documentation, Release 16.08

Query
POST /openssl_createcacertificate

Create certificate

Query
POST / openssl_createcertificate

Delete certificate

Query
GET /openssl_deletecertificate

Import SSL certificate

Query
POST /openssl_import

DNS configuration

Host configuration

Query
POST /hosts

Resolv.conf configuration

Query
POST /resolv_conf

Services daemon

Reload services

Query
POST /services

Xivo Services

Reload XiVO services

Query

378 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

POST /xivoctl

Handlers

Execute handlers

Query
POST /exec_request_handlers

Status check

Status

Query
GET /status_check

Example request
GET /status_check HTTP/1.1
Host: xivoserver
Content-Type: application/json

Example response
HTTP/1.1 200 OK
Content-Type: application/json
{

"status": "up"
}

For other services, see http://api.xivo.io. This public instance does not allow you to directly test the requests (i.e.
the “Try it out!” button will not work), but you may use the embedded version of your XiVO, where this button
will work.

How to use the embedded REST API web interface (Swagger UI)

Every XiVO server embeds its own copy of the Swagger UI exposed on http://api.xivo.io. The instance embedded
in the XiVO allows you to directly try the requests with the in-page buttons.

For the rest of this article, we will consider that your XiVO is accessible under the hostname MY_XIVO.

The instance is available at: http://MY_XIVO/api

Before using the Swagger UI, there are a few prerequisites:

• Accept the HTTPS certificate for each service of the XiVO

• Add the permissions to use the REST API to a Web Services Access user

• Obtain an authentication token

1.12. API and SDK 379

http://api.xivo.io
http://api.xivo.io
http://MY_XIVO/api

XiVO Documentation, Release 16.08

HTTPS certificates For each service on the left menu that you want to try, you need to accept the HTTPS
certificate for this service. To that end:

1. click on the service in the menu on the left

2. copy the URL you see in the text box at the top of the page, something like:
https://MY_XIVO:9497/0.1/api/api.json and paste it in your browser

3. accept the HTTPS certificate validation exception

4. go back to http://MY_XIVO/api and select the service again (or click on the top-right “Explore” button)

You should now be able to see the different sections for the REST API of that service.

REST API permissions You must create a Web Services Access with the right permissions before using the
REST API. See Web Services Access.

Each endpoint has its own ACL, but you may add wildcard ACLs, like:

• auth.# to gain access to all xivo-auth REST API endpoints

• confd.# to gain access to all xivo-confd REST API endpoints

• # to gain access to every endpoint of every service.

Warning: Only use wildcards when doing tests, not with a production REST API access. You should always
restrict the permissions to the bare minimum.

Obtain an authentication token The quick and easy way is to use http://auth.xivo.io. You may log-in with the
following parameters:

• Host = https://MY_XIVO:9497 (you must have accepted the HTTPS certificate of xivo-auth first)

• Backend = XIVO Service

• Login = username of your Web Services Access

• Password = the associated password

Then click “Sign in!”, and you can get see the token. This token will expire after one hour, and you will need to
re-authenticate to get a new token.

The other way you can get a token is via Swagger UI (what else?). Choose the xivo-auth service in the list of
REST API. Under tokens, choose POST /tokens.

1. In the top-right text box of the page (left to the “Explore” button), fill “token” with the string
username:password where those credentials come from the Web Services Access you created earlier.

2. Go back to the POST /tokens section and click on the yellow box to the right of the body parameter.
This will pre-fill the body parameter.

3. In the body parameter, set:

• backend to xivo-service

• expiration to the number of seconds for the token to be valid (e.g. 60 for one hour). After the
expiration time, you will need to re-authenticate to get a new token.

4. Click “Try it out” at the end of the section

5. In the response, you should see a token attribute.

For more informations about the backends of xivo-auth, see xivo-auth plugins.

380 Chapter 1. Table of Contents

http://MY_XIVO/api
http://auth.xivo.io
https://MY_XIVO:9497

XiVO Documentation, Release 16.08

Use the authentication token To use the authentication token, choose the service for which you want to try the
REST API, then paste the token in the top-right text box. You do not need to click “Explore” to apply the token
change, the new token will be used automatically at the next request you send.

You can now choose a REST API endpoint and “Try it out”.

Access

Each REST API is available via HTTPS on different ports.

Examples (xivo-confd)

Get the list of users
curl --insecure \
-H 'Accept: application/json' \
-H 'X-Auth-Token: 17496bfa-4653-9d9d-92aa-17def0fa9826' \
https://xivo:9486/1.1/users

Create a user
When sending data, you need the Content-Type header.
curl --insecure \
-X POST \
-d '{"firstname": "hello-world"} \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-H 'X-Auth-Token: 17496bfa-4653-9d9d-92aa-17def0fa9826' \
https://xivo:9486/1.1/users

Authentication

For all REST APIs, the main way to authenticate is to use an access token obtained from xivo-auth. This token
should be given in the X-Auth-Token header in your request. For example:

curl <options...> -H 'X-Auth-Token: 17496bfa-4653-9d9d-92aa-17def0fa9826' https://<xivo_address>:9486/1.1/users

Also, your token needs to have the right ACLs to give you access to the resource you want. See REST API
Permissions.

REST API Permissions

The tokens delivered by xivo-auth have a list of permissions associated (ACL), that determine which REST re-
sources are authorized for this token. Each REST resource has an associated required ACL. When you try to
access to a REST resource, this resource requests xivo-auth with your token and the required ACL to validate the
access.

Syntax An ACL contains 3 parts separated by dot (.)

• service: name of service, without prefix xivo- (e.g. xivo-confd -> confd).

• resource: name of resource separated by dot (.) (e.g. /users/17/lines -> users.17.lines).

• action: action performed on resource. Generally, this is the following schema:

– get -> read

– put -> update

– post -> create

– delete -> delete

1.12. API and SDK 381

XiVO Documentation, Release 16.08

Substitutions There are 3 substitution values for an ACL.

• *: replace only one word between dot.

• #: replace one or multiple words.

• me: replace the user_uuid from sent token.

Example The ACL confd.users.me.#.read will have access to the following REST resources:

GET /users/{user_id}/cti
GET /users/{user_id}/funckeys
GET /users/{user_id}/funckeys/{position}
GET /users/{user_id}/funckeys/templates
GET /users/{user_id}/lines
GET /users/{user_id}/lines/{line_id}
GET /users/{user_id}/voicemail

• service: confd

• resource: users.me.#

• action: read

The ACL confd.users.me.funckeys.*.* will have access to the following REST resources:

DELETE /users/{user_id}funckeys/{position}
GET /users/{user_id}funckeys/{position}
PUT /users/{user_id}funckeys/{position}
GET /users/{user_id}funckeys/templates

• service: confd

• resource: users.me.funckeys.*

• action: *

Where {user_id} is the user uuid from the token.

Available ACLs The ACL corresponding to each resource is documented in http://auth.xivo.io. Some resources
may not have any associated ACL yet, so you must use {service}.# instead.

See also Service Authentication for details about the token-based authentication process.

Other methods (xivo-confd)

Warning: DEPRECATED

For compatibility reason, xivo-confd may accept requests without an access token. For this, you must create a
webservices user in the web interface (Configuration → Management → Web Services Access):

• if an IP address is specified for the user, no authentication is needed

• if you choose not to specify an IP address for the user, you can connect to the REST API with a HTTP Digest
authentication, using the user name and password you provided. For instance, the following command line
allows to retrieve XiVO users through the REST API, using the login admin and the password passadmin:

curl <options...> --digest --cookie '' -u admin:passadmin https://<xivo_address>:9486/1.1/users

382 Chapter 1. Table of Contents

http://auth.xivo.io

XiVO Documentation, Release 16.08

HTTP status codes

Standard HTTP status codes are used. For the full definition see IANA definition.

• 200: Success

• 201: Created

• 400: Incorrect syntax

• 404: Resource not found

• 406: Not acceptable

• 412: Precondition failed

• 415: Unsupported media type

• 500: Internal server error

See also Errors for general explanations about error codes.

General URL parameters

Example usage of general parameters:

GET http://<xivo_address>:9486/1.1/voicemails?limit=X&offset=Y

Parameters

order Sort the list using a column (e.g. “number”). See specific resource documentation for columns allowed.

direction ‘asc’ or ‘desc’. Sort list in ascending (asc) or descending (desc) order

limit total number of resources to show in the list. Must be a positive integer

offset number of resources to skip over before starting the list. Must be a positive integer

search Search resources. Only resources with a field containing the search term will be listed.

Data representation

Data retrieved from the REST server

JSON is used to encode returned or sent data. Therefore, the following headers are needed:

• when the request is supposed to return JSON: Accept = application/json

• when the request’s body contains JSON: Content-Type = application/json

Note: Optional properties can be added without changing the protocol version in the main list or in the object list
itself. Properties will not be removed, type and name will not be modified.

Getting object lists GET /1.1/objects

When returning lists the format is as follows:

• total - number of items in total in the system configuration (optional)

• items - returned data as an array of object properties list.

1.12. API and SDK 383

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

XiVO Documentation, Release 16.08

Other optional properties can be added later.

Response data format

{
"total": 2,

"items":
[

{
"id": "1",
"prop1": "test"

},
{

"id": "2",
"prop1": "ssd"

}
]

}

Getting An Object Format returned is a list of properties. The object should always have the same attributes
set, the default value being the equivalent to NULL in the content-type format.

GET /1.1/objects/<id>

Response data format

{
"id": "1",
"prop1": "test"

}

Data sent to the REST server

The XiVO REST server implements POST and PUT methods for item creation and update respectively. Data is
created using the POST method via a root URL and is updated using the PUT method via a root URL suffixed by
/<id. The server expects to receive JSON encoded data. Only one item can be processed per request. The data
format and required data fields are illustrated in the following example:

Request data format

{
"id": "1",
"prop1": "test"

}

When updating, only the id and updated properties are needed, omitted properties are not updated. Some properties
can also be optional when creating an object.

Errors

A request to the web services may return an error. An error will always be associated to an HTTP error code, and
eventually to one or more error messages. The following errors are common to all web services:

Error
code

Error
message

Description

406 empty Accept header missing or contains an unsupported content type
415 empty Content-Type header missing or contains an unsupported content type
500 list of errors An error occured on the server side; the content of the message depends of the

type of errors which occured

384 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

The 400, 404 and 412 errors depend on the web service you are requesting. They are separately described for each
of them.

The error messages are contained in a JSON list, even if there is only one error message:

[message_1, message_2, ...]

1.12.4 Subroutine

What is it ?

The preprocess subroutine allows you to enhance XiVO features through the Asterisk dialplan. Features that can
be enhanced are :

• User

• Group

• Queue

• Meetme

• Incoming call

• Outgoing call

There are three possible categories :

• Subroutine for one feature

• Subroutine for global forwarding

• Subroutine for global incoming call to an object

Adding new subroutine

If you want to add a new subroutine, we propose to edit a new configuration file in the directory
/etc/asterisk/extensions_extra.d. You can also add this file by the web interface.

An example:

[myexemple]
exten = s,1,NoOp(This is an example)
same = n,Return()

Don’t forget to finish your subroutine by a Return().

Global subroutine

There is predefined subroutine for this feature, you can find the name and the activation in the
/etc/xivo/asterisk/xivo_globals.conf. The variables are:

; Global Preprocess subroutine
XIVO_PRESUBR_GLOBAL_ENABLE = 1
XIVO_PRESUBR_GLOBAL_USER = xivo-subrgbl-user
XIVO_PRESUBR_GLOBAL_AGENT = xivo-subrgbl-agent
XIVO_PRESUBR_GLOBAL_GROUP = xivo-subrgbl-group
XIVO_PRESUBR_GLOBAL_QUEUE = xivo-subrgbl-queue
XIVO_PRESUBR_GLOBAL_MEETME = xivo-subrgbl-meetme
XIVO_PRESUBR_GLOBAL_DID = xivo-subrgbl-did
XIVO_PRESUBR_GLOBAL_OUTCALL = xivo-subrgbl-outcall
XIVO_PRESUBR_GLOBAL_PAGING = xivo-subrgbl-paging

So if you want to add a subroutine for all of your XiVO users you can do this:

1.12. API and SDK 385

XiVO Documentation, Release 16.08

[xivo-subrgbl-user]
exten = s,1,NoOp(This is an example for all my users)
same = n,Return()

Forward subroutine

You can also use a global subroutine for call forward.

; Preprocess subroutine for forwards
XIVO_PRESUBR_FWD_ENABLE = 1
XIVO_PRESUBR_FWD_USER = xivo-subrfwd-user
XIVO_PRESUBR_FWD_GROUP = xivo-subrfwd-group
XIVO_PRESUBR_FWD_QUEUE = xivo-subrfwd-queue
XIVO_PRESUBR_FWD_MEETME = xivo-subrfwd-meetme
XIVO_PRESUBR_FWD_VOICEMAIL = xivo-subrfwd-voicemail
XIVO_PRESUBR_FWD_SCHEDULE = xivo-subrfwd-schedule
XIVO_PRESUBR_FWD_VOICEMENU = xivo-subrfwd-voicemenu
XIVO_PRESUBR_FWD_SOUND = xivo-subrfwd-sound
XIVO_PRESUBR_FWD_CUSTOM = xivo-subrfwd-custom
XIVO_PRESUBR_FWD_EXTENSION = xivo-subrfwd-extension

Dialplan variables

Some of the XiVO variables can be used in subroutines.

XIVO_CALLORIGIN ; intern for internal calls, extern for external calls

1.12.5 WebSocket Event Service

XiVO offers a service to receive messages published on the bus (e.g. RabbitMQ) over an encrypted WebSocket
connection. This ease in building dynamic web applications that are using events from your XiVO.

The service is provided by the xivo-websocketd component.

Getting Started

First, you need a XiVO in version 16.03 or later.

Then, to use the service, you need to:

1. connect to it on port 9502 using an encrypted WebSocket connection.

2. authenticate to it by providing a xivo-auth token that has the websocketd ACL. If you don’t know how
to obtain a xivo-auth token from your XiVO, consult the documentation on xivo-auth.

For example, if you want to use the service located at example.org with the token some-token-id, you
would use the URL wss://example.org:9502/?token=some-token-id.

The SSL/TLS certificate that is used by the WebSocket server is the same as the one used by the XiVO web interface
and the REST APIs. By default, this is a self-signed certificate, and web browsers will prevent connections
from being successfully established for security reasons. On most web browsers, this can be circumvented by
first visiting the https://<xivo-ip>:9502/ URL and adding a security exception. Other solutions to this
problem are described in the connection section.

After a succesful connection and authentication to the service, the server will send the following message:

{"op": "init", "code": 0, "msg": ""}

386 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/WebSocket

XiVO Documentation, Release 16.08

This indicate that the server is ready to accept more commands from the client. Had an error happened, the server
would have closed the connection, possibly with one of the service specific WebSocket close code.

The message you see is part of the small JSON-based protocol that is used for the client/server interaction.

To receive events on your WebSocket connection, you need to tell the server which type of events you are in-
terested in, and then tell it to start sending you these events. For example, if you are interested in the “end-
point_status_update” events, you send the following command:

{"op": "subscribe", "data": {"event_name": "endpoint_status_update"}}

If all goes well, the server will respond with:

{"op": "subscribe", "code": 0, "msg": ""}

Once you have subscribed to all the events you are interested in, you ask the server to start sending you the
matching events by sending the following command:

{"op": "start"}

The server will respond with:

{"op": "start", "code": 0, "msg": ""}

Once you have received this message, all the other messages you’ll receive will be messages originating from the
bus, in the same format as they were on the bus.

Example

Here’s a rudimentary example of a web page accessing the service:

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="utf-8">
5 <title>XiVO WebSocket Example</title>
6 <script>
7 var socket = null;
8 var started = false;
9

10 function connect() {
11 if (socket != null) {
12 console.log("socket already connected");
13 return;
14 }
15

16 var host = document.getElementById("host").value;
17 var token_id = document.getElementById("token").value;
18 socket = new WebSocket("wss://" + host + ":9502/?token=" + token_id);
19 socket.onclose = function(event) {
20 socket = null;
21 console.log("websocketd closed with code " + event.code + " and reason '" + event.reason + "'");
22 };
23 socket.onmessage = function(event) {
24 if (started) {
25 console.log("message received: " + event.data);
26 return;
27 }
28

29 var msg = JSON.parse(event.data);
30 switch (msg.op) {
31 case "init":
32 subscribe("*");

1.12. API and SDK 387

XiVO Documentation, Release 16.08

33 start();
34 break;
35 case "start":
36 started = true;
37 console.log("waiting for messages");
38 break;
39 }
40 };
41 started = false;
42 }
43

44 function subscribe(event_name) {
45 var msg = {
46 op: "subscribe",
47 data: {
48 event_name: event_name
49 }
50 };
51 socket.send(JSON.stringify(msg));
52 };
53

54 function start() {
55 var msg = {
56 op: "start"
57 };
58 socket.send(JSON.stringify(msg));
59 }
60 </script>
61 </head>
62 <body>
63 <p>Open the web console to see what's happening.</p>
64 <form>
65 <div>
66 <label for="host">Host:</label>
67 <input type="text" id="host" autofocus>
68 </div>
69 <div>
70 <label for="token">Token ID:</label>
71 <input type="text" id="token" size="35">
72 </div>
73 <div>
74 <button type="button" onclick="connect();">Connect</button>
75 </div>
76 </form>
77 </body>
78 </html>

The page has a form for the user to enter a host and token ID, and has a connect button. When the button is clicked,
the connect function is called, and the WebSocket connection is created at line 18 (using the WebSocket API):

socket = new WebSocket("wss://" + host + ":9502/?token=" + token_id);

Then, at line 23, a onmessage callback is set on the WebSocket object:

socket.onmessage = function(event) {
if (started) {

console.log("message received: " + event.data);
return;

}

var msg = JSON.parse(event.data);
switch (msg.op) {

case "init":

388 Chapter 1. Table of Contents

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

XiVO Documentation, Release 16.08

subscribe("endpoint_status_update");
subscribe("user_status_update");
start();
break;

case "start":
started = true;
console.log("waiting for messages");
break;

}
};

After a successful connection to the service, an “init” message will be received by the client. When the client re-
ceives this message, it sends two subscribe commands (e.g. subscribe("endpoint_status_update"))
and a start command (e.g. start()). When the client receives the “start” message, it sets the started flag.
After that, all the other messages it receives will be logged to the console.

Reference

The WebSocket service is provided by xivo-websocketd, and its behaviour can be configured via its configu-
ration files located under the /etc/xivo-websocketd directory. After modifying the configuration files, you
need to restart xivo-websocketd with systemctl restart xivo-websocketd.

Connection

The service is available on port 9502 on all network interfaces by default. This can be changed in the configuration
file.

The canonical URL to reach the service is wss://<host>:9502/.

The connection is always encrypted. The certificate and private key used by the server can be changed in the
configuration file. By default, since the certificate is self-signed, you’ll have to either:

• add a security exception on the client machines that access the service

• use a certificate signed by an untrusted CA and add the CA bundle on the system that access the service

• use a trusted certificate

See the HTTPS certificate section for more information on certificate configuration.

Authentication

Authentication is done by passing a xivo-auth token ID in the token query parameter. Authentication is manda-
tory.

The token must have the websocketd ACL.

When the token expires, the server close the connection with the status code 4003. There is currently no way to
change the token of an existing connection. A new connection must be made when the token expires.

Events Access Control

Clients connected to xivo-websocketd only receive events that they are authorized to receive. For example,
a client connected with a token obtained from the “xivo_user” xivo-auth backend will not receive call events
of other users.

When a message is received from the bus by xivo-websocketd, it extracts the ACL from the required_acl
key of the event. If the field is missing, no clients will receive the event. If the value is null, all subscribed clients
will receive the event. If the value is a string, then all subscribed clients which have a matching ACL will receive
the event.

1.12. API and SDK 389

XiVO Documentation, Release 16.08

No authorization check is done at subscription time. Checks are only done when an event is received by the server.
This mean a client can subscribe to an event “foo”, but will never receive any of these events if it does not have
the matching ACL.

See the Events section for more information on the required ACL of events which are available by default on
XiVO.

Status Code

The WebSocket connection might be closed by the server using one of following status code:

• 4001: No token ID was provided.

• 4002: Authentication failed. Either the token ID is invalid, expired, or does not have the necessary ACL.

• 4003: Authentication expired. The token has expired or was deleted.

• 4004: Protocol error. The server received a frame that it could not understand. For example, the content
was not valid JSON, or was requesting an unknown operation, or a mandatory argument to an operation was
missing.

The server also uses the pre-defined WebSocket status codes.

Protocol

A JSON-based protocol is used over the WebSocket connection to control which events are received by the client.

Client Messages The format of the messages sent by the client are all of the same format:

{"op": "<operation-name>", "data": <operation-specific-value>}

The “op” key is mandatory, and the value is either “subscribe” or “start”. The “data” key is mandatory for the
“subscribe” operation.

The “subscribe” message ask the server to subscribe the client to the given event. When a message with the same
name is published on the “xivo” exchange of the bus, the server forwards the message to all the subscribed clients
that are authorized to receive it. For this command, the “data” value is a dictionary with an “event_name” key
(mandatory). Example:

{"op": "subscribe", "data": {"event_name": "endpoint_status_update"}}

You can subscribe to any event. The special event name * can be used to match all events.

See the Events section for more information on the events which are available by default on XiVO.

The “start” message ask the server to start sending messages from the bus to the client. Example:

{"op": "start"}

The server won’t forward messages from the bus to the client until it receives the “start” message from the client.

If the client send a message that the server doesn’t understand, the server closes the connection.

Server Messages The format of the messages sent by the server are all of the same format (until the server
receives a “start” command):

{"op": "<operation-name>", "code": <status-code>, "msg": "<error message>"}

The 3 keys are always present. The value of the “op” key can be one of “init”, “subscribe” or “start”. The
value of the “code” key is an integer representing the status of the operation, 0 meaning there was no error, other
values meaning there was an error. The “msg” is an empty string unless “code” is non-zero, in which case it’s a
human-readable message of the error.

390 Chapter 1. Table of Contents

http://tools.ietf.org/html/rfc6455#section-7.4

XiVO Documentation, Release 16.08

The “init” message is only sent after the connection is successfully established between the client and the server.
It’s code is always zero; if the connection could not be established, the connection is simply closed. Example:

{"op": "init", "code": 0, "msg": ""}

The “subscribe” message is sent as a response to a client “subscribe” message. The code is always zero. Example:

{"op": "subscribe", "code": 0, "msg": ""}

The “start” message is sent as a response to a client “start” message. The code is always zero. Example:

{"op": "start", "code": 0, "msg": ""}

After receiving the “start” message, the server switch into the “bus/started” mode, where all messages that the
server will ever sent will be the body of the messages it received on the bus on behalf of the client.

Note that a client can subscribe to more events after sending its “start” message, but it won’t receive any response
from the server, e.g. the server won’t send a corresponding “subscribe” message. Said differently, once the client
has sent a “start” message, every message the client will ever receive are messages coming from the bus.

1.13 Contributors

General information:

1.13.1 Contributing to the Documentation

XiVO documentation is generated with Sphinx. The source code is available on GitHub at https://github.com/xivo-
pbx/xivo-doc

Provided you already have Python installed on your system. You need first to install Sphinx : easy_install
-U Sphinx 1.

Quick Reference

• http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt

• http://docutils.sourceforge.net/docs/user/rst/quickref.html

• http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html

Documentation guideline

Here’s the guideline/conventions to follow for the XiVO documentation.

Language

The documentation must be written in english, and only in english.

Sections

The top section of each file must be capitalized using the following rule: capitalization of all words, except for
articles, prepositions, conjunctions, and forms of to be.

Correct:

The Vitamins are in My Fresh California Raisins

1 easy_install can be found in the debian package python-setuptools : sudo apt-get install python-setuptools

1.13. Contributors 391

https://github.com/xivo-pbx/xivo-doc
https://github.com/xivo-pbx/xivo-doc
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html

XiVO Documentation, Release 16.08

Incorrect:

The Vitamins Are In My Fresh California Raisins

Use the following punctuation characters:

• * with overline, for “file title”

• =, for sections

• -, for subsections

• ^, for subsubsections

Punctuation characters should be exactly as long as the section text.

Correct:

Section1
========

Incorrect:

Section2
==========

There should be 2 empty lines between sections, except when an empty section is followed by another section.

Correct:

Section1
========

Foo.

Section2
========

Bar.

Correct:

Section1
========

Foo.

.. _target:

Section2
========

Bar.

Correct:

Section1
========

Subsection1

Foo.

Incorrect:

392 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Section1
========

Foo.

Section2
========

Bar.

Lists

Bullet lists:

* First item

* Second item

Autonumbered lists:

#. First item
#. Second item

Literal blocks

Use :: on the same line as the line containing text when possible.

The literal blocks must be indented with three spaces.

Correct:

Bla bla bla::

apt-get update

Incorrect:

Bla bla bla:

::

apt-get update

Inline markup

Use the following roles when applicable:

• :file: for file, i.e.:

The :file:`/dev/null` file.

• :menuselection: for the web interface menu:

The :menuselection:`Configuration --> Management --> Certificates` page.

• :guilabel: for designating a specific GUI element:

The :guilabel:`Action` column.

1.13. Contributors 393

XiVO Documentation, Release 16.08

Others

• There must be no warning nor error messages when building the documentation with make html.

• There should be one and only one newline character at the end of each file

• There should be no trailing whitespace at the end of lines

• Paragraphs must be wrapped and lines should be at most 100 characters long

1.13.2 Debugging Asterisk

Precondition

To debug asterisk crashes or freezes, you need the following debug packages on your XiVO:

General rule XiVO < 14.18 XiVO >= 14.18
Example version 14.12 14.18
Commands

apt-get install xivo-fai-14.12
apt-get update
apt-get install gdb
apt-get install -t xivo-14.12 asterisk-dbg xivo-libsccp-dbg

xivo-dist xivo-14.18
apt-get update
apt-get install gdb
apt-get install -t xivo-14.18 asterisk-dbg xivo-libsccp-dbg

So There is a Problem with Asterisk. Now What ?

1. Find out the time of the incident from the people most likely to know

2. Determine if there was a segfault

(a) The command grep segfault /var/log/syslog should return a line such as the following:

Oct 16 16:12:43 xivo-1 kernel: [10295061.047120] asterisk[1255]: segfault at e ip b751aa6b sp b5ef14d4 error 4 in libc-2.11.3.so[b74ad000+140000]

(b) Note the exact time of the incident from the segfault line.

(c) Follow the Debugging Asterisk Crash procedure.

3. If you observe some of the following common symptoms, follow the Debugging Asterisk Freeze procedure.

• The output of command service asterisk status says Asterisk PBX is running.

• No more calls are distributed and phones go to No Service.

• Command core show channels returns only headers (no data) right before returning

4. Fetch Asterisk logs for the day of the crash (make sure file was not already logrotated):

cp -a /var/log/asterisk/full /var/local/`date +"%Y%m%d"`-`hostname`-asterisk-full.log

5. Fetch xivo-ctid logs for the day of the crash (make sure file was not already logrotated):

cp -a /var/log/xivo-ctid.log /var/local/`date +"%Y%m%d"`-`hostname`-xivo-ctid.log

6. Open a new issue on the bugtracker with following information

• Tracker: Bug

• Status: New

• Category: Asterisk

• In versions: The version of your XiVO installation where the crash/freeze happened

• Subject : Asterisk Crash or Asterisk Freeze

394 Chapter 1. Table of Contents

https://projects.xivo.io/projects/xivo/issues/new

XiVO Documentation, Release 16.08

• Description : Add as much context as possible, if possible, a scenario that lead to the issue, the date
and time of issue, where we can fetch logs and backtrace

• Attach logs and backtrace (if available) to the ticket (issue must be saved, then edited and files attached
to a comment).

Debugging Asterisk Crash

When asterisk crashes, it usually leaves a core file in /var/spool/asterisk/.

You can create a backtrace from a core file named core_file with:

gdb -batch -ex "bt full" -ex "thread apply all bt" asterisk core_file > bt-threads.txt

Debugging Asterisk Freeze

You can create a backtrace of a running asterisk process with:

gdb -batch -ex "thread apply all bt" asterisk $(pidof asterisk) > bt-threads.txt

If your version of asterisk has been compiled with the DEBUG_THREADS flag, you can get more information
about locks with:

asterisk -rx "core show locks" > core-show-locks.txt

Note: Debugging freeze without this information is usually a lot more difficult.

Optionally, other information that can be interesting:

• the output of asterisk -rx ’core show channels’

• the verbose log of asterisk just before the freeze

Recompiling Asterisk

It’s relatively straightforward to recompile the asterisk version of your XiVO with the DEBUG_THREADS and
DONT_OPTIMIZE flag, which make debugging an asterisk problem easier.

The steps are:

1. Uncomment the deb-src line for the XiVO sources:

sed -i 's/^# *deb-src/deb-src/' /etc/apt/sources.list.d/xivo*

2. Fetch the asterisk source package:

mkdir -p ~/ast-rebuild
cd ~/ast-rebuild
apt-get update
apt-get install -y build-essential
apt-get source asterisk

3. Install the build dependencies:

apt-get build-dep -y asterisk

4. Enable the DEBUG_THREADS and DONT_OPTIMIZE flag:

cd <asterisk-source-folder>
vim debian/rules

1.13. Contributors 395

XiVO Documentation, Release 16.08

5. Update the changelog by appending +debug1 in the package version:

vim debian/changelog

6. Rebuild the asterisk binary packages:

dpkg-buildpackage -us -uc

This will create a couple of .deb files in the parent directory, which you can install via dpkg.

Recompiling a vanilla version of Asterisk

It is sometimes useful to produce a “vanilla” version of Asterisk, i.e. a version of Asterisk that has none of
the XiVO patches applied, to make sure that the problem is present in the original upstream code. This is also
sometimes necessary before opening a ticket on the Asterisk issue tracker.

The procedure is similar to the one described above. Before calling dpkg-buildpackage, you just need to:

1. Make sure quilt is installed:

apt-get install -y quilt

2. Unapply all the currently applied patches:

quilt pop -a

3. Remove all the lines in the debian/patches/series file:

truncate -s0 debian/patches/series

When installing a vanilla version of Asterisk on a XiVO, you’ll need stop monit, otherwise it will restart asterisk
every few minutes.

Running Asterisk under Valgrind

1. Install valgrind:

apt-get install valgrind

2. Recompile asterisk with the DONT_OPTIMIZE flag.

3. Edit /etc/asterisk/modules.conf so that asterisk doesn’t load unnecessary modules. This step is
optional. It makes asterisk start (noticeably) faster and often makes the output of valgrind easier to analyze,
since there’s less noise.

4. Edit /etc/asterisk/asterisk.conf and comment the highpriority option. This step is op-
tional.

5. Stop monit and asterisk:

monit quit
service asterisk stop

6. Stop all unneeded XiVO services. For example, it can be useful to stop xivo-ctid, so that it won’t interact
with asterisk via the AMI.

7. Copy the valgrind.supp file into /tmp. The valgrind.supp file is located in the contrib directory of the asterisk
source code.

8. Execute valgrind in the /tmp directory:

cd /tmp
valgrind --leak-check=full --log-file=valgrind.txt --suppressions=valgrind.supp --vgdb=no asterisk -G asterisk -U asterisk -fnc

396 Chapter 1. Table of Contents

https://issues.asterisk.org

XiVO Documentation, Release 16.08

Note that when you terminate asterisk with Control-C, asterisk does not unload the modules before exiting. What
this means is that you might have lots of “possibly lost” memory errors due to that. If you already know which
modules is responsible for the memory leak/bug, you should explicitly unload it before terminating asterisk.

Running asterisk under valgrind takes a lots of extra memory, so make sure you have enough RAM.

External links

• https://wiki.asterisk.org/wiki/display/AST/Debugging

• http://blog.xivo.io/visualizing-asterisk-deadlocks.html

• https://wiki.asterisk.org/wiki/display/AST/Valgrind

1.13.3 Debugging Daemons

To activate debug mode, add debug: true in the daemon configuration file). The output will be available in
the daemon’s log file.

It is also possible to run the XiVO daemon, in command line. This will allow to run in foreground and debug
mode. To see how to use it, type:

xivo-{name} -h

Note that it’s usually a good idea to stop monit before running a daemon in foreground:

systemctl stop monit.service

xivo-confgend

twistd -no --python=/usr/bin/xivo-confgend

No debug mode in confgend.

xivo-provd

twistd -no -u xivo-provd -g xivo-provd -r epoll xivo-provd -s -v

• -s for logging to stderr

• -v for verbose

consul

sudo -u consul /usr/bin/consul agent -config-dir /etc/consul/xivo -pid-file /var/run/consul/consul.pid

There is no log file, but you can consult the output of consul with:

consul monitor

2015/08/03 09:48:25 [INFO] consul: cluster leadership acquired
2015/08/03 09:48:25 [INFO] consul: New leader elected: this-xivo
2015/08/03 09:48:26 [INFO] raft: Disabling EnableSingleNode (bootstrap)
2015/08/03 11:04:08 [INFO] agent.rpc: Accepted client: 127.0.0.1:41545

1.13. Contributors 397

https://wiki.asterisk.org/wiki/display/AST/Debugging
http://blog.xivo.io/visualizing-asterisk-deadlocks.html
https://wiki.asterisk.org/wiki/display/AST/Valgrind

XiVO Documentation, Release 16.08

1.13.4 Generate your own prompts

If you want your XiVO to speak in your language that is not supported by XiVO, and you don’t want to record the
whole package of sounds in a studio, you may generate them yourself with some text-to-speech services.

The following procedure will generate prompts for pt_BR (portuguese from Brazil) based on the Google TTS
service.

Note: There are two sets of prompts: the Asterisk prompts and the XiVO prompts. This procedure only covers
the XiVO prompts, but it may be adapted for Asterisk prompts.

1. Create an account on Transifex and join the team of translation of XiVO.

2. Translate the prompts in the xivo-prompts resource.

3. Go to https://www.transifex.com/proformatique/xivo/xivo-prompt/pt_BR/download/for_use/
and download the file on your XiVO. You should have a file named like
for_use_xivo_xivo-prompt_pt_BR.ini.

4. On your XiVO, download the tool to automate the use of Google TTS:

wget https://github.com/zaf/asterisk-googletts/raw/master/cli/googletts-cli.pl
chmod +x googletts-cli.pl

5. Then run the tool, and generate the sound files (set LANGUAGE and COUNTRY to your own language):

LANGUAGE=pt
COUNTRY=BR
mkdir -p wav/{digits,letters}
cat for_use_xivo_xivo-prompt_${LANGUAGE}_${COUNTRY}.ini | while IFS='=' read file text ; do
echo $file
./googletts-cli.pl -t "$text" -l ${LANGUAGE}-${COUNTRY} -s 1.4 -r 8000 -o wav/$file.wav

done

6. Install the prompts on your system:

mv wav /usr/share/asterisk/sounds/${LANGUAGE}_${COUNTRY}

7. Make your language available in the web interface:

sed -i "s/'nl_NL'/\0, '${LANGUAGE}_${COUNTRY}'/" /usr/share/xivo-web-interface/lib/i18n.inc
systemctl restart spawn-fcgi

Note that this last modification may be erased after running xivo-upgrade.

And that’s it, you can configure a user to use your new language and he will hear the prompts in your language.
You may also want to use the xivo-confd HTTP API to mass-update your users.

1.13.5 XiVO Guidelines

Inter-process communication

Our current goal is to use only two means of communication between XiVO processes:

• a REST API over HTTP for synchronous commands

• a software bus (RabbitMQ) for asynchronous events

Each component should have its own REST API and its own events and can communicate with every other
component from across a network only via those means.

398 Chapter 1. Table of Contents

http://www.asterisksounds.org/en
https://www.transifex.com/proformatique/xivo/xivo-prompt/pt_BR/download/for_use/

XiVO Documentation, Release 16.08

Service API

The current xivo-dao Git repository contains the basis of the future services Python API. The API is split between
different resources available in XiVO, such as users, groups, schedules... For each resource, there are different
modules :

• service: the public module, providing possible actions. It contains only business logic and no technical
logic. There must be no file name, no SQL queries and no URLs in this module.

• dao: the private Data Access Object. It knows where to get data and how to update it, such as SQL queries,
file names, URLs, but has no business logic.

• model: the public class used to represent the resource. It must be self-contained and have almost no methods,
except for computed fields based on other fields in the same object.

• notifier: private, it knows to whom and in which format events must be sent.

• validator: private, it checks input parameters from the service module.

Definition of XiVO Daemon

The goal is to make XiVO as elastic as possible, i.e. the XiVO services need to be able to run on separate machines
and still talk to each other.

To be in accordance with our goal, a XiVO daemon must (if applicable):

• Offer a REST API (with encryption, authentication and accepting cross-site requests)

• Be able to read and send events on a software bus

• Be able to run inside a container, such as Docker, and be separated from the XiVO server

• Offer a configuration file in YAML format.

• Access the XiVO database through the xivo-dao library

• Have a configurable level of logging

• Have its own log file

• Be extendable through the use of plugins

• Not run with system privileges

• Be installable from source

• Service discovery with consul

Currently, none of the XiVO daemons meet these expectations; it is a work in progress.

1.13.6 Network

Configuration for daemon

Network Flow table (IN) :

Daemon
Name

Service Protocol Port Listen Authentication Enabled

•
ICMP ICMP

•
0.0.0.0 no yes

postfix SMTP TCP 25 0.0.0.0 yes yes
isc-dhcpd DHCP UDP 67 0.0.0.0 no no
isc-dhcpd DHCP UDP 68 0.0.0.0 no no

Continued on next page

1.13. Contributors 399

https://github.com/xivo-pbx/xivo-dao

XiVO Documentation, Release 16.08

Table 1.9 – continued from previous page
Daemon
Name

Service Protocol Port Listen Authentication Enabled

xivo-provd TFTP UDP 69 0.0.0.0 no yes
ntpd NTP UDP 123 0.0.0.0 yes yes
monit HTTP TCP 2812 127.0.0.1 no yes
asterisk SIP UDP 5060 0.0.0.0 yes yes
asterisk IAX UDP 4569 0.0.0.0 yes yes
asterisk SCCP TCP 2000 0.0.0.0 yes yes
asterisk AMI TCP 5038 127.0.0.1 yes yes
asterisk HTTP TCP 5039 127.0.0.1 yes yes
asterisk HTTPS TCP 5040 127.0.0.1 yes yes
sshd SSH TCP 22 0.0.0.0 yes yes
xivo-webi HTTP TCP 80 0.0.0.0 yes yes
xivo-webi HTTPS TCP 443 0.0.0.0 yes yes
munin HTTP TCP 4949 127.0.0.1 no yes
xivo-ctid XiVO-CTI/S TCP 5003 0.0.0.0 yes yes
postgresql SQL TCP 5432 127.0.0.1 yes yes
rabbitMQ AMQP TCP 5672 0.0.0.0 yes yes
consul Consul RPC TCP 8300 127.0.0.1 yes yes
consul Consul Serf

LAN
TCP/UDP 8301 127.0.0.1 yes yes

consul Consul Serf
WAN

TCP/UDP 8302 127.0.0.1 yes yes

consul Consul HTTPS TCP 8500 127.0.0.1 both yes
xivo-provd HTTP TCP 8666 127.0.0.1 no yes
xivo-provd HTTP TCP 8667 0.0.0.0 no yes
xivo-confgend HTTP TCP 8669 127.0.0.1 no yes
xivo-sysconfd HTTP TCP 8668 127.0.0.1 no yes
xivo-confd HTTPS TCP 9486 0.0.0.0 yes yes
xivo-confd HTTP TCP 9487 127.0.0.1 no yes
xivo-dird HTTPS TCP 9489 0.0.0.0 yes yes
xivo-amid HTTPS TCP 9491 0.0.0.0 yes yes
xivo-agentd HTTPS TCP 9493 0.0.0.0 yes yes
xivo-ctid HTTP TCP 9495 127.0.0.1 no yes
xivo-auth HTTPS TCP 9497 0.0.0.0 both yes
xivo-dird-
phoned

HTTP TCP 9498 0.0.0.0 IP filtering yes

xivo-dird-
phoned

HTTPS TCP 9499 0.0.0.0 IP filtering yes

xivo-ctid-ng HTTPS TCP 9500 0.0.0.0 yes yes
xivo-
websocketd

WSS TCP 9502 0.0.0.0 yes yes

1.13.7 Debian packaging for XiVO

Adding a package from backports

1. Download the package:

apt-get download name-of-package/jessie-backports

2. Copy the .deb on to the mirror:

scp name-of-package.deb mirror.xivo.io:/tmp

3. Add package to distribution on mirror:

400 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

ssh mirror.xivo.io
cd /data/reprepro/xivo
reprepro includedeb xivo-dev /tmp/name-of-package.deb

1.13.8 Profiling Python Programs

Profiling CPU/Time Usage

Here’s an example on how to profile xivo-ctid for CPU/time usage:

1. Stop the monit daemon:

service monit stop

2. Stop the process you want to profile, i.e. xivo-ctid:

service xivo-ctid stop

3. Start the service in foreground mode running with the profiler:

python -m cProfile -o test.profile /usr/bin/xivo-ctid -f

This will create a file named test.profile when the process terminates.

To profile xivo-confgend, you must use this command instead of the one above:

twistd -p test.profile --profiler=cprofile --savestats -no --python=/usr/bin/xivo-confgend

Note that profiling multi-threaded program (xivo-agid, xivo-confd) doesn’t work reliably.

The Debugging Daemons section documents how to launch the various XiVO services in foreground/debug
mode.

4. Examine the result of the profiling:

$ python -m pstats test.profile
Welcome to the profile statistics browser.
% sort time
% stats 15
...
% sort cumulative
% stats 15

Measuring Code Coverage

Here’s an example on how to measure the code coverage of xivo-ctid.

This can be useful when you suspect a piece of code to be unused and you want to have additional information
about it.

1. Install the following packages:

apt-get install python-pip build-essential python-dev

2. Install coverage via pip:

pip install coverage

3. Run the program in foreground mode with coverage run:

service monit stop
service xivo-ctid stop
coverage erase
coverage run /usr/bin/xivo-ctid -f

1.13. Contributors 401

XiVO Documentation, Release 16.08

The Debugging Daemons section documents how to launch the various XiVO service in foreground/debug
mode.

4. After the process terminates, use coverage html to generate an HTML coverage report:

coverage html --include='*xivo_cti*'

This will generate an htlmcov directory in the current directory.

5. Browse the coverage report.

Either copy the directory onto your computer and open it with a web browser, or start a web server on the
XiVO:

cd htmlcov
python -m SimpleHTTPServer

Then open the page from your computer (i.e. not on the xivo):

firefox http://<xivo-hostname>:8000

External Links

• Official python documentation

• PyMOTW

• coverage.py

1.13.9 Style Guide

Syntax

License

Python files start with a UTF8 encoding comment and the GPLv3 license. A blank line should separate the license
from the imports

Example:

-*- coding: utf-8 -*-
Copyright 2016 Avencall
SPDX-License-Identifier: GPL-3.0+

import argparse

Spacing

• Lines should not go further than 80 to 100 characters.

• In python, indentation blocks use 4 spaces

• In PHP, indentation blocks use tabs

• Imports should be ordered alphabetically

• Separate module imports and from imports with a blank line

Example:

402 Chapter 1. Table of Contents

http://docs.python.org/library/profile.html
http://blog.doughellmann.com/2008/08/pymotw-profile-cprofile-pstats.html
http://nedbatchelder.com/code/coverage/

XiVO Documentation, Release 16.08

import argparse
import datetime
import os
import re
import shutil
import tempfile

from StringIO import StringIO
from urllib import urlencode

PEP8

When possible, use pep8 to validate your code. Generally, the following errors are ignored :

• E501 (max 80 chars per line)

Example:

pep8 --ignore=E501 xivo_cti

When possible, avoid using backslashes to separate lines.

Bad Example:

user = session.query(User).filter(User.firstname == firstname)\
.filter(User.lastname == lastname)\
.filter(User.number == number)\
.all()

Good Example:

user = (session.query(User).filter(User.firstname == firstname)
.filter(User.lastname == lastname)
.filter(User.number == number)
.all())

Strings

Avoid using the + operator for concatenating strings. Use string interpolation instead.

Bad Example:

phone_interface = "SIP" + "/" + username + "-" + password

Good Example:

phone_interface = "SIP/%s-%s" % (username, password)

Comments

Redundant comments should be avoided. Instead, effort should be put on making the code clearer.

Bad Example:

#Add the meeting to the calendar only if it was created on a week day
#(monday to friday)
if meeting.day > 0 and meeting.day < 7:

calendar.add(meeting)

Good Example:

1.13. Contributors 403

XiVO Documentation, Release 16.08

def created_on_week_day(meeting):
return meeting.day > 0 and meeting.day < 7

if created_on_week_day(meeting):
calendar.add(meeting)

Conditions

Avoid using parenthesis around if statements, unless the statement expands on multiple lines or you need to nest
your conditions.

Bad Examples:

if(x == 3):
print "condition is true"

if(x == 3 and y == 4):
print "condition is true"

Good Examples:

if x == 3:
print "condition is true"

if x == 3 and y == 4:
print "condition is true"

if (extremely_long_variable == 3
and another_long_variable == 4
and yet_another_variable == 5):

print "condition is true"

if (2 + 3 + 4) - (1 + 1 + 1) == 6:
print "condition is true"

Consider refactoring your statement into a function if it becomes too long, or the meaning isn’t clear.

Bad Example:

if price * tax - bonus / reduction + fee < money:
product.pay(money)

Good Example:

def calculate_price(price, tax, bonus, reduction, fee):
return price * tax - bonus / reduction + fee

final_price = calculate_price(price, tax, bonus, reduction, fee)

if final_price < money:
product.pay(money)

Naming

• Class names are in CamelCase

• File names are in lower_underscore_case

Conventions for functions prefixed by find:

• Return None when nothing is found

404 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Return an object when a single entity is found

• Return the first element when multiple entities are found

Example:

def find_by_username(username):
users = [user1, user2, user3]
user_search = [user for user in users if user.username == username]

if len(user_search) == 0:
return None

return user_search[0]

Conventions for functions prefixed by get:

• Raise an Exception when nothing is found

• Return an object when a single entity is found

• Return the first element when multiple entities are found

Example:

def get_user(userid):
users = [user1, user2, user3]
user_search = [user for user in users if user.userid == userid]

if len(user_search) == 0:
raise UserNotFoundError(userid)

return user_search[0]

Conventions for functions prefixed by find_all:

• Return an empty list when nothing is found

• Return a list of objects when multiple entites are found

Example:

def find_all_users_by_username(username):
users = [user1, user2, user3]
user_search = [user for user in users if user.username == username]

return user_search

Magic numbers

Magic numbers should be avoided. Arbitrary values should be assigned to variables with a clear name

Bad example:

class TestRanking(unittest.TestCase):

def test_ranking(self):
rank = Rank(1, 2, 3)

self.assertEquals(rank.position, 1)
self.assertEquals(rank.grade, 2)
self.assertEquals(rank.session, 3)

Good example:

1.13. Contributors 405

XiVO Documentation, Release 16.08

class TestRanking(unittest.TestCase):

def test_ranking(self):
position = 1
grade = 2
session = 3

rank = Rank(position, grade, session)

self.assertEquals(rank.position, position)
self.assertEquals(rank.grade, grade)
self.assertEquals(rank.session, session)

Tests

Tests for a package are placed in their own folder named “tests” inside the package.

Example:

package1/
__init__.py
mod1.py
tests/

__init__.py
test_mod1.py

package2/
__init__.py
mod9.py
tests/

__init__.py
test_mod9.py

Unit tests should be short, clear and concise in order to make the test easy to understand. A unit test is separated
into 3 sections :

• Preconditions / Preparations

• Thing to test

• Assertions

Sections are separated by a blank line. Sections that become too big should be split into smaller functions.

Example:

class UserTestCase(unittest.TestCase):

def test_fullname(self):
user = User(firstname='Bob', lastname='Marley')
expected = 'Bob Marley'

fullname = user.fullname()

self.assertEquals(expected, fullname)

def _prepare_expected_user(self, firstname, lastname, number):
user = User()
user.firstname = firstname
user.lastname = lastname
user.number = number

return user

def _assert_users_are_equal(expected_user, actual_user):

406 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

self.assertEquals(expected_user.firstname, actual_user.firstname)
self.assertEquals(expected_user.lastname, actual_user.lastname)
self.assertEquals(expected_user.number, actual_user.number)

def test_create_user(self):
expected = self._prepare_expected_user('Bob', 'Marley', '4185551234')

user = create_user('Bob', 'Marley', '4185551234')

self._assert_users_are_equal(expected, user)

Exceptions

Exceptions should not be used for flow control. Raise exceptions only for edge cases, or when something that
isn’t usually expected happens.

Bad Example:

def is_user_available(user):
if user.available():

return True
else:

raise Exception("User isn't available")

try:
is_user_available(user)

except Exception:
disable_user(user)

Good Example:

def is_user_available(user):
if user.available():

return True
else:

return False

if not is_user_available(user):
disable_user(user)

Avoid throwing Exception. Use one of Python’s built-in Exceptions, or create your own custom Exception. A
list of exceptions is available on the Python documentation website.

Bad Example:

def get_user(userid):
user = session.query(User).get(userid)

if not user:
raise Exception("User not found")

Good Example:

class UserNotFoundError(LookupError):

def __init__(self, userid):
message = "user with id %s not found" % userid
LookupError.__init__(self, message)

def get_user(userid):
user = session.query(User).get(userid)

1.13. Contributors 407

http://docs.python.org/2/library/exceptions.html#exception-hierarchy

XiVO Documentation, Release 16.08

if not user:
raise UserNotFoundError(userid)

Never use except: without specifying any exception type. The reason is that it will also catch important
exceptions, such as KeyboardInterrupt and OutOfMemory exceptions, making your program unstoppable
or continuously failing, instead of stopping when wanted.

Bad Example:

try:
get_user(user_id)

except:
logger.exception("There was an error")

Good Example:

try:
get_user(user_id)

except UserNotFoundError as e:
logger.error(e.message)
raise

1.13.10 Translating XiVO

French and English are maintained by Avencall. Other languages are provided by the community.

Asterisk and XiVO Prompts

Avencall is in contact with several studios for different languages and prompts. The information for those lan-
guages are :

• French : Super Sonic productions (supersonicprod@wanadoo.fr)

• English : Asterisk voice (allison@theasteriskvoice.com)

• German : ATS studio

• Italian : ATS studio

Prompts transcripts are listed in Transifex (*-prompts). You may translate them there.

The prompts used in XiVO are stored in xivo-sounds git repository. You may also want to generate your own
sound files.

XiVO Client

All translations are in Transifex (xivo-client). The source language is English. Translations are synchronised with
the code before every release.

Web Interface

Translations are currently available in French and English. There are no plans to translate the Web interface in
other languages.

1.13.11 XiVO Package File Structure

Package naming

Let’s assume we want to organise the files for xivo-confd.

408 Chapter 1. Table of Contents

mailto:supersonicprod@wanadoo.fr
mailto:allison@theasteriskvoice.com
https://www.transifex.com/avencall/xivo/
https://github.com/xivo-pbx/xivo-sounds
https://www.transifex.com/avencall/xivo/

XiVO Documentation, Release 16.08

• Git repo name: xivo-confd

• Binary file name: xivo-confd

• Python package name: xivo_confd

xivo-confd
|-- bin
| `-- xivo-confd
|-- contribs
| `-- docker
| |-- ...
| `-- prod
| `-- ...
|-- debian
| `-- ...
|-- Dockerfile
|-- docs
| `-- ...
|-- etc
| `-- ...
|-- integration-tests
| `-- ...
|-- LICENSE
|-- README.md
|-- requirements.txt
|-- setup.cfg
|-- setup.py
|-- test-requirements.txt
|-- .travis.yml
`-- xivo_confd

`-- ...

Sources

etc/ Contains default configuration files.

docs/ Contains technical documentation for this package: API doc, architecture doc, diagrams, ... Should be in
RST format using Sphinx.

bin/ Contains the binaries. Not applicable for pure libraries.

integration-tests/ Contains the tests bigger than unit-tests. Tests should be runnable simply, e.g.
nosetests integration-tests.

README.md Read me in markdown (Github flavor).

LICENSE License (GPLv3)

.travis.yml Travis CI configuration file

Python

Standard files:

• setup.py

• setup.cfg

• requirements.txt

• test-requirements.txt

• xivo_confd/ (the main sources)

1.13. Contributors 409

XiVO Documentation, Release 16.08

Debian

debian/ Contains the Debian packaging files (control, rules, ...)

Docker

Dockerfile Used to build a docker image for a working production version

contribs/docker/prod/ Contains the files necessary for running xivo-confd inside a production Docker
image

contribs/docker/other/ Contains the Dockerfile and other files to run xivo-confd inside Docker with
specific configuration

File naming

• PID file: /var/run/xivo-confd/xivo-confd.pid

• WSGI socket file: /var/run/xivo-confd/xivo-confd.sock

• Config file: /etc/xivo-confd/config.yml

• Log file: /var/log/xivo-confd.log

• Static data files: /usr/share/xivo-confd

• Storage data files: /var/lib/xivo-confd

Component specific information:

1.13.12 CTI Server

This section describes the informations and tools for CTI Server.

CTI Proxy

Here’s how to run the various CTI client-server development/debugging tools. These tools can be found on
GitHub, in the XiVO project.

You can get the scripts by using Git:

$ git clone https://github.com/xivo-pbx/xivo-tools.git

General Information

Both the ctispy, ctisave and ctistat tools work in a similar way. They both are proxies that need to be inserted
between the CTI client and the CTI server message flow.

To do this, you first start the given tool on your development machine, giving it the CTI server hostname as the
first argument. You then configure your CTI client to connect to the tool on port 50030 (notice the trailing 0). The
tool should then accept the connection from the client, and once this is done, will make a connection to the server,
thereby being able to process all the information sent between the client and the server.

In the following examples, we suppose that the CTI server is located on the host named xivo-new.

410 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-tools

XiVO Documentation, Release 16.08

Tools

ctispy ctispy can be used to see the message flow between the client and the server in “real-time”.

The simplest invocation is:

$ cti-proxy/ctispy xivo-new

You can pretty-print the messages if you want by using the --pretty-print option:

$ cti-proxy/ctispy xivo-new --pretty-print

By default, each message is displayed separately even though more than one message can be in a single TCP
packet. You can also use the --raw option if you want to see the raw traffic between the client and the server:

$ cti-proxy/ctispy xivo-new --raw

Note that when using the --raw option, some other option doesn’t work because the messages are not de-
coded/analyzed.

If you want to remove some fields from the messages, you can use the --strip option:

$ cti-proxy/ctispy xivo-new --strip timenow --strip commandid --strip replyid

If you want to see only messages matching a certain key and value, use the --include option:

$ cti-proxy/ctispy xivo-new --include class=getlist

Finally, you can ignore all the messages from the client or the server by using the --no-client or
--no-server option respectively.

By default, ctispy will exit after the connection with the client is closed. You can bypass this behavior with the
--loop option, that will make the CTI proxy continue, whether the client is connected or not.

ctisave ctisave save the messages from the client and the server in two separate files. This is useful to do
more careful post-analysis.

The simplest invocation is:

$ cti-proxy/ctisave xivo-new /tmp/cti-client /tmp/cti-server

To do comparison, it’s often useful to strip some fields:

$ cti-proxy/ctisave xivo-new /tmp/cti-client /tmp/cti-server --strip timenow
--strip commandid --strip replyid

One useful thing to do with files generated from different ctisave invocation is to compare them with a tool like
vimdiff, for example:

1.13. Contributors 411

XiVO Documentation, Release 16.08

ctistat ctistat display various statistic about a CTI “session” when it ends.

The simplest invocation is:

$ cti-proxy/ctistat xivo-new

CTI Protocol

Protocol Changelog

The versions below indicate the xivo version followed by the protocol version.

Warning: The CTI server protocol is subject to change without any prior warning. If you are using this
protocol in your own tools please be sure to check that the protocol did not change before upgrading XiVO

16.04 - 2.1

• the Chitchat command to and from fields are now a list of two strings, xivo_uuid and user_uuid.

16.01 - 2.0

• the lastconnswins field has been removed from the Login capas command

• the loginkind field has been removed from the Login capas command

• the ipbxcommands and regcommands capakinds have been removed from Login capas command

• the Login password command has been modified. The hashedpassword has been replaced by the password
field which is now sent verbatim.

412 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

15.20 - 1.2

• the STARTTLS command has been added

15.19 - 1.2

• the Chitchat command to field is now a list of two elements, xivo_uuid and user_id.

• the getlist command has been removed for the channels listname.

• many fields have been removed from the getlist command.

– users list

* enableclient

* profileclient

– phones

* context

* protocol

* simultcalls

* channels

– voicemails

* email

* fullname

* old

* waiting

– agents

* phonenumber

• some ipbxcommands have been removed:

– mailboxcount

– atxfer

– transfer

– hangup

– originate

15.18 - 1.2

• add the Attended transfer to voicemail command

• add the Blind transfer to voicemail command

• the Send fax command now include the size and data field.

• the filetransfer command has been removed.

15.16 - 1.2

• the Get relations command was added.

• the Relations message was added.

1.13. Contributors 413

XiVO Documentation, Release 16.08

15.14 - 1.2

• the people_purge_personal_contacts message was added.

• the people_personal_contacts_purged message was added.

• the people_personal_contact_raw message was added.

• the people_personal_contact_raw_result message was added.

• the people_edit_personal_contact message was added.

• the people_personal_contact_raw_update message was added.

• the people_import_personal_contacts_csv message was added.

• the people_import_personal_contacts_csv_result message was added.

• the people_export_personal_contacts_csv message was added.

• the people_export_personal_contacts_csv_result message was added.

• for messages people_personal_contact_deleted and people_favorite_update there are
no longer data sub-key.

15.13 - 1.2

• for channel status update message:

– the value of commstatus have been changed from linked-caller and linked-called to
linked.

– the key direction have been removed.

– the key talkingto_kind have been removed.

• the people_personal_contacts message was added.

• the people_personal_contacts_result message was added.

• the people_create_personal_contact message was added.

• the people_personal_contact_created message was added.

• the people_delete_personal_contact message was added.

• the people_personal_contact_deleted message was added.

15.12 - 1.2

• people_search_result has a new key in relations: source_entry_id

• the people_favorites message was added.

• the people_favorites_result message was added.

• the people_set_favorite message was added.

• the people_favorite_update message was added.

15.11 - 1.2

• the fax_progress message was added.

15.09 - 1.2

• for messages of class history the client cannot request by mode anymore. The server returns all calls and
the mode is now metadata for each call.

414 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

14.24 - 1.2

• for messages of class ipbxcommand, the command record and sipnotify have been removed.

• the logfromclient message has been removed

14.22 - 1.2

• for messages of class faxsend, the steps file_decoded and file_converted have been removed.

14.06 - 1.2

• the dial_success message was added

14.05 - 1.2

• the unhold_switchboard command was renamed resume_switchboard.

13.22 - 1.2

• the actionfiche message was renamed call_form_result.

13.17 - 1.2

• for messages of class login_capas from server to client: the key presence has been removed.

13.14 - 1.2

• for messages of class getlist, list agents and function updatestatus: the key availability
in the status object/dictionary has changed values:

– deleted values: on_call_non_acd_incoming and on_call_non_acd_outgoing

– added values: * on_call_non_acd_incoming_internal *
on_call_non_acd_incoming_external * on_call_non_acd_outgoing_internal
* on_call_non_acd_outgoing_external

13.12 - 1.2

• for messages of class getlist, list agents and function updatestatus: the key availability
in the status object/dictionary has changed values:

– deleted value: on_call_non_acd

– added values: on_call_non_acd_incoming and on_call_non_acd_outgoing

13.10 - 1.2

• for messages of class getlist and function updateconfig, the config object/dictionary does not
have a rules_order key anymore.

Commands

Objects have the format: “<type>:<xivoid>/<typeid>”

• <type> can take any of the following values: user, agent, queue, phone, group, meetme, ...

• <xivoid> indicates on which server the object is defined

• <typeid> is the object id, type dependant

1.13. Contributors 415

XiVO Documentation, Release 16.08

e.g. user:xivo-test/5 I’m looking for the user that has the ID 5 on the xivo-test server.

Here is a non exaustive list of types:

• exten

• user

• vm_consult

• voicemail

Agent

Login agent Client -> Server

{"agentphonenumber": "1000", "class": "ipbxcommand", "command": "agentlogin", "commandid": 733366597}

agentphonenumber is the physical phone set where the agent is going to log on.

Server > Client

• Login successfull :

{"function": "updateconfig",
"listname": "queuemembers",
"tipbxid": "xivo",
"timenow": 1362664323.94,
"tid": "Agent/2002,blue",
"config": {"paused": "0",

"penalty": "0",
"membership": "static",
"status": "1",
"lastcall": "",
"interface": "Agent/2002",
"queue_name": "blue",
"callstaken": "0"},

"class": "getlist"}

{"function": "updatestatus",
"listname": "agents",
"tipbxid": "xivo",
"timenow": 1362664323.94,
"status": {"availability_since": 1362664323.94,

"queues": [],
"on_call": false,
"availability": "available",
"channel": null},

"tid": 7,
"class": "getlist"}

• The phone number is already used by an other agent :

{"class": "ipbxcommand", "error_string": "agent_login_exten_in_use", "timenow": 1362664158.14}

Logout agent Client -> Server

{"class": "ipbxcommand", "command": "agentlogout", "commandid": 552759274}

Pause On all queues

Client -> Server

416 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

{"class": "ipbxcommand", "command": "queuepause", "commandid": 859140432, "member": "agent:xivo/1", "queue": "queue:xivo/all"}

Un pause agent On all queues

Client -> Server

{"class": "ipbxcommand", "command": "queueunpause", "commandid": 822604987, "member": "agent:xivo/1", "queue": "queue:xivo/all"}

Add an agent in a queue Client -> Server

{"class": "ipbxcommand", "command": "queueadd", "commandid": 542766213, "member": "agent:xivo/3", "queue": "queue:xivo/2"}

Remove an agent from a queue Client -> Server

{"class": "ipbxcommand", "command": "queueremove", "commandid": 742480296, "member": "agent:xivo/3", "queue": "queue:xivo/2"}

Listen to an agent Client -> Server

{"class": "ipbxcommand", "command": "listen", "commandid": 1423579492, "destination": "xivo/1", "subcommand": "start"}

Configuration The following messages are used to retrieve XiVO configuration.

Common fields

• class : getlist

• function : listid

• commandid

• tipbxid

• listname : Name of the list to be retreived : users, phones, agents, queues, voicemails, queuemembers

{
"class": "getlist",
"commandid": 489035169,
"function": "listid",
"tipbxid": "xivo",
"listname": "........."

}

Users configuration Return a list of configured user id’s

Client -> Server

{"class": "getlist", "commandid": 489035169, "function": "listid", "listname": "users", "tipbxid": "xivo"}

Server -> Client

{
"class": "getlist",
"function": "listid", "listname": "users",
"list": ["11", "12", "14", "17", "1", "3", "2", "4", "9"],
"tipbxid": "xivo","timenow": 1362735061.17
}

1.13. Contributors 417

XiVO Documentation, Release 16.08

User configuration Return a user configuration

• tid is the userid returned by Users configuration message

Client -> Server

{
"class": "getlist",
"function": "updateconfig",
"listname": "users",
"tid": "17",
"tpbxid": "xivo", "commandid": 5}

Server -> Client

{
"class": "getlist",
"function": "updateconfig",
"listname": "users",
"tid": "17",
"tipbxid": "xivo",
"timenow": 1362741166.4,
"config": {

"enablednd": 0, "destrna": "", "enablerna": 0, "enableunc": 0, "destunc": "", "destbusy": "", "enablebusy": 0, "enablexfer": 1,
"firstname": "Alice", "lastname": "Bouzat", "fullname": "Alice Bouzat",
"voicemailid": null, "incallfilter": 0, "enablevoicemail": 0, "agentid": 2, "linelist": ["7"], "mobilephonenumber": ""}

}

Phones configuration Client -> Server

{"class": "getlist", "commandid": 495252308, "function": "listid", "listname": "phones", "tipbxid": "xivo"}

Server > Client

{"class": "getlist", "function": "listid", "list": ["1", "3", "2", "5", "14", "7", "6", "9", "8"],
"listname": "phones", "timenow": 1364994093.38, "tipbxid": "xivo"}

Individual phone configuration request:

{"class": "getlist", "commandid": 704096693, "function": "updateconfig", "listname": "phones", "tid": "3", "tipbxid": "xivo"}

Server > Client

{"class": "getlist",
"config": {"allowtransfer": null, "identity": "SIP/ihvbur", "iduserfeatures": 1,

"initialized": null, "number": "1000"},
"function": "updateconfig", "listname": "phones", "tid": "3", "timenow": 1364994093.43, "tipbxid": "xivo"}

Agents configuration Client -> Server

{"class": "getlist", "commandid": 1431355191, "function": "listid", "listname": "agents", "tipbxid": "xivo"}

Queues configuration Client -> Server

{"class": "getlist", "commandid": 719950939, "function": "listid", "listname": "queues", "tipbxid": "xivo"}

Server -> Client

{"function": "listid", "listname": "queues", "tipbxid": "xivo",
"list": ["1", "10", "3", "2", "5", "4", "7", "6", "9", "8"], "timenow": 1382704649.64, "class": "getlist"}

418 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Queue configuration tid is the id returned in the list field of the getlist response message

Client -> Server

{"commandid":7,"class":"getlist","tid":"3","tipbxid":"xivo","function":"updateconfig","listname":"queues"}

Server -> Client

{
"function": "updateconfig", "listname": "queues", "tipbxid": "xivo", "timenow": 1382704649.69, "tid": "3",
"config":

{"displayname": "red", "name": "red", "context": "default", "number": "3002"},
"class": "getlist"}

Voicemails configuration Client -> Server

{"class": "getlist", "commandid": 1034160761, "function": "listid", "listname": "voicemails", "tipbxid": "xivo"}

Queue members configuration Client -> Server

{"class": "getlist", "commandid": 964899043, "function": "listid", "listname": "queuemembers", "tipbxid": "xivo"}

Server -> Client

{"function": "listid", "listname": "queuemembers", "tipbxid": "xivo",
"list": ["Agent/2501,blue", "Agent/2500,yellow", "Agent/2002,yellow", "Agent/2003,__switchboard",

"Agent/2003,blue", "Agent/108,blue", "Agent/2002,blue"],
"timenow": 1382717016.23,
"class": "getlist"}

Fax

Send fax Client -> Server

{"class": "faxsend",
"filename": "contract.pdf",
"destination", 41400,
"size": 100000,
"data": "<base64 of the fax content>"}

Fax status Server -> Client

• pages: number of pages sent (NULL if FAILED)

• status

– FAILED: Failed to send fax.

– PRESENDFAX: Fax number exist and converting pdf->tiff has been done.

– SUCCESS: Fax sent with success.

{"class": "fax_progress", "status": "SUCCESS", "pages": 2 }

Call control commands

1.13. Contributors 419

XiVO Documentation, Release 16.08

Dial

• destination can be any number

• destination can be a pseudo URL of the form “type:ibpx/id”

Client -> Server

{
"class": "ipbxcommand",
"command": "dial",
"commandid": <commandid>,
"destination": "exten:xivo/<extension>"

}

For example :

{
"class": "ipbxcommand",
"command": "dial",
"commandid": 1683305913,
"destination": "exten:xivo/1202"

}

The server will answer with either an error or a success:

{
"class": "ipbxcommand",
"error_string": "unreachable_extension:1202",

}

{
"class": "dial_success",
"exten": "1202"

}

Attended transfer to voicemail Transfer the current call to a given voicemail and listen to the message before
completing the transfer.

Client -> Server

{
"class": "attended_transfer_voicemail",
"voicemail": "<voicemail number>"

}

Blind transfer to voicemail Transfer the current call to a given voicemail.

Client -> Server

{
"class": "blind_transfer_voicemail",
"voicemail": "<voicemail number>"

}

Login Once the network is connected at the socket level, the login process requires three steps. If one of these
steps is omitted, the connection is reset by the cti server.

• login_id, the username is sent as a login to the cti server, cti server answers by giving a sessionid

• login_pass, the password is sent to the cti server, cti server answers by giving a capaid

• login_capas, the capaid is returned to the server with the user’s availability, cti server answers with a list of
info relevant to the user

420 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

{
"commandid": <commandid>,
"class": "login_id",
}

• class: defined what class of command use.

• commandid : a unique integer number.

Login ID Client -> Server

{
"class": "login_id",
"commandid": 1092130023,
"company": "default",
"ident": "X11-LE-24079",
"lastlogout-datetime": "2013-02-19T11:13:36",
"lastlogout-stopper": "disconnect",
"userlogin": <userlogin>,
"xivoversion": "<cti protocol version>"
}

Server -> Client

{
"class": "login_id",
"sessionid": "21UaGDfst7",
"timenow": 1361268824.64,
"xivoversion": "<cti protocol version>"

}

Note: sessionid is used to calculate the hashed password in next step

Login password Client -> Server

{
"class": "login_pass",
"password": "secret",
"commandid": <commandid>

}

Server -> Client

{
"capalist": [

2
],
"class": "login_pass",
"replyid": 1646064863,
"timenow": 1361268824.68

}

If no CTI profile is defined on XiVO for this user, the following message will be sent:

{
"error_string": "capaid_undefined",
"class": "login_pass",
"replyid": 1646064863,
"timenow": 1361268824.68

}

1.13. Contributors 421

XiVO Documentation, Release 16.08

Note: the first element of the capalist is used in the next step login_capas

Login capas Client -> Server

{
"capaid": 3,
"commandid": <commandid>,
"state": "available",
"class": "login_capas"
}

Server -> Client

First message, describes all the capabilities of the client, configured at the server level

• presence : actual presence of the user

• userid : the user id, can be used as a reference

• capas

– userstatus [a list of available statuses]

* status name

* color

* selectionnable status from this status

* default action to be done when this status is selected

* long name

– services : list of availble services

– phonestatus : list of available phonestatuses with default colors and descriptive names

– capaxlets : List of xlets configured for this profile

– appliname

{
"class": "login_capas"
"presence": "available",
"userid": "3",
"ipbxid": "xivo",
"timenow": 1361440830.99,
"replyid": 3,
"capas": {

"preferences": false,
"userstatus": {

"available": { "color": "#08FD20",
"allowed": ["available", "away", "outtolunch", "donotdisturb", "berightback"],
"actions": {"enablednd": "false"}, "longname": "Disponible"

},
"berightback": { "color": "#FFB545",

"allowed": ["available", "away", "outtolunch", "donotdisturb", "berightback"],
"actions": {"enablednd": "false"}, "longname": "Bient\u00f4t de retour"

},
"disconnected": { "color": "#202020",

"actions": {"agentlogoff": ""}, "longname": "D\u00e9connect\u00e9"
},

/* a list of other status depends on the cti server configuration */
},

"services": ["fwdrna", "fwdbusy", "fwdunc", "enablednd"],
"phonestatus": {

422 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"16": {"color": "#F7FF05", "longname": "En Attente"},
"1": {"color": "#FF032D", "longname": "En ligne OU appelle"},
"0": {"color": "#0DFF25", "longname": "Disponible"},
"2": {"color": "#FF0008", "longname": "Occup\u00e9"},
"-1": {"color": "#000000", "longname": "D\u00e9sactiv\u00e9"},
"4": {"color": "#FFFFFF", "longname": "Indisponible"},
"-2": {"color": "#030303", "longname": "Inexistant"},
"9": {"color": "#FF0526", "longname": "(En Ligne OU Appelle) ET Sonne"},
"8": {"color": "#1B0AFF", "longname": "Sonne"}

}
},

"capaxlets": [["identity", "grid"], ["search", "tab"], ["customerinfo", "tab", "1"], ["fax", "tab", "2"], ["dial", "grid", "2"], ["tabber", "grid", "3"], ["history", "tab", "3"], ["remotedirectory", "tab", "4"], ["features", "tab", "5"], ["people", "tab", "6"], ["conference", "tab", "7"]],
"appliname": "Client",

}

Second message describes the current user configuration

{
"function": "updateconfig",
"listname": "users",
"tipbxid": "xivo",
"timenow": 1361440830.99,
"tid": "3",
"config": {"enablednd": false},
"class": "getlist"

}

Third message describes the current user status

{
"function": "updatestatus",
"listname": "users",
"status": {"availstate": "available"},
"tipbxid": "xivo",
"tid": "3",
"class": "getlist",
"timenow": 1361440830.99

}

Others

call_form_result This message is received when a call form is submitted from a client to the XiVO.

Client -> Server

{
"class": "call_form_result",
"commandid": <commandid>,
"infos": {"buttonname": "saveandclose",

"variables": {"XIVOFORM_varname1": "value1",
"XIVOFORM_varname2": "value2"}}

}

History

• size : Size of the list to be sent by the server

Client -> Server

{
"class": "history",
"commandid": <commandid>

1.13. Contributors 423

XiVO Documentation, Release 16.08

"size": "8",
"xuserid": "<xivoid>/<userfeaturesid>",

}

Server > Client

Send back a table of calls :

• duration in seconds

• extension: caller/destination extension

• fullname: caller ID name

• mode

– 0 : sent calls

– 1 : received calls

– 2 : missed calls

{
"class": "history",
"history": [

{"calldate": "2013-03-29T08:44:35.273998",
"duration": 30.148765,
"extension": "*844201",
"fullname": "Alice Wonderland",
"mode": 0},

{"calldate": "2013-03-28T16:56:48.071213",
"duration": 58.134744,
"extension": "41400",
"fullname": "41400"}
"mode": 1},

],
"replyid": 529422441,
"timenow": 1364571477.33

}

Chitchat Client > Server

{
"class": "chitchat",
"alias": "Alice",
"text": "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse venenatis velit nibh, ac condimentum felis rutrum id.",
"to": [<xivo_uuid>, <user_uuid>],
"commandid": <commandid>

}

Server > Client

The following message is received by the remote XiVO client

{
"class": "chitchat",
"from": [<xivo_uuid>, <user_uuid>],
"to": [<xivo_uuid>, <user_uuid>]
"alias": "Alice",
"text": "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse venenatis velit nibh, ac condimentum felis rutrum id.",

}

Directory Request directory information, names matching pattern ignore case.

Client -> Server

424 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

{
"class": "directory",
"commandid": 1079140548,
"pattern": "pau"

}

Server > Client

{
"class": "directory",
"headers": ["Nom", "Num\u00e9ro", "Mobile", "Autre num\u00e9ro", "E-mail", "Fonction", "Site", "Source"],
"replyid": 1079140548,
"resultlist": ["Claire Mapaurtal;;+33644558899;31256;cmapaurtal@societe.com;;;",

"Paul Salvadier;+33445236988;+33678521430;31406;psalvadier@societe.com;;;"],
"status": "ok",
"timenow": 1378798928.26

}

parking

keepalive

availstate

getipbxlist

{
"class": "getipbxlist",
"commandid": <commandid>

}

People

Get relations This command will trigger a Relations message.

Client -> Server

{
"class": "get_relations"

}

People headers Client -> Server

{
"class": "people_headers",

}

Server -> Client

{
"class": "people_headers_result",
"column_headers": ["Status", "Name", "Number"],
"column_types": [null, null, "number"],

}

People Search Client -> Server

{
"class": "people_search",
"pattern": <pattern>,

}

1.13. Contributors 425

XiVO Documentation, Release 16.08

Server -> Client

{
"class": "people_search_result",
"term": "Bob",
"column_headers": ["Firstname", "Lastname", "Phone number", "Mobile", "Fax", "Email", "Agent"],
"column_types": [null, "name", "number_office", "number_mobile", "fax", "email", "relation_agent"],
"results": [
{

"column_values": ["Bob", "Marley", "5555555", "5556666", "5553333", "mail@example.com", null],
"relations": {

"agent_id": null,
"user_id": null,
"endpoint_id": null,
"source_entry_id": null

},
"source": "my_ldap_directory"

}, {
"column_values": ["Charlie", "Boblin", "5555556", "5554444", "5552222", "mail2@example.com", null],
"relations": {

"agent_id": 12,
"user_id": 34,
"endpoint_id": 56,
"source_entry_id": "34"

},
"source": "internal"

}
]

}

Relations This message can currently only be received as a response to the Get relations command.

• The xivo_uuid is the id of the server

• The user_id is the id of the current user.

• The endpoint_id is the id of the line of the current user or null.

• The agent_id is the id of the agent of the current user or null.

Server -> Client

{
"class": "relations",
"data": {"xivo_uuid": <the xivo uuid>,

"user_id": <the user id>,
"endpoint_id": <the endpoint id>,
"agent_id": <the agent id>}

}

Favorites list Client -> Server

{
"class": "people_favorites",

}

Server -> Client

{
"class": "people_favorites_result",
"column_headers": ["Firstname", "Lastname", "Phone number", "Mobile", "Fax", "Email", "Agent", "Favorites"],
"column_types": [null, "name", "number_office", "number_mobile", "fax", "email", "relation_agent", "favorite"],
"results": [
{

426 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"column_values": ["Bob", "Marley", "5555555", "5556666", "5553333", "mail@example.com", null, true],
"relations": {

"agent_id": null,
"user_id": null,
"endpoint_id": null,
"source_entry_id": "55"

},
"source": "my_ldap_directory"

}, {
"column_values": ["Charlie", "Boblin", "5555556", "5554444", "5552222", "mail2@example.com", null, true],
"relations": {

"agent_id": 12,
"user_id": 34,
"endpoint_id": 56,
"source_entry_id": "34"

},
"source": "internal"

}
]

}

Set favorite Client -> Server

{
"class": "people_set_favorite",
"source": "my_ldap_directory"
"source_entry_id": "55"
"favorite": true

}

Server -> Client

{
"class": "people_favorite_update",
"source": "my_ldap_directory"
"source_entry_id": "55"
"favorite": true

}

STARTTLS The STARTTLS command is used to upgrade a connection to use SSL. Once connected, the server
send a starttls offer to the client which can reply with a starttls message including the status field. The server will
then send a starttls message back to the client with the same status and start the handshake if the status is true.

Server -> Client

{
"class": "starttls"

}

Client -> Server -> Client

{
"class": "starttls",
"status": true

}

Note: a client which does not reply to the starttls offer will keep it’s unencrypted connection.

Personal contacts list Client -> Server

1.13. Contributors 427

XiVO Documentation, Release 16.08

{
"class": "people_personal_contacts"

}

Server -> Client

{
"class": "people_personal_contacts_result",
"column_headers": ["Firstname", "Lastname", "Phone number", "Mobile", "Fax", "Email", "Agent", "Favorites", "Personal"],
"column_types": [null, "name", "number_office", "number_mobile", "fax", "email", "relation_agent", "favorite", "personal"],
"results": [
{

"column_values": ["Bob", "Marley", "5555555", "5556666", "5553333", "mail@example.com", null, false, true],
"relations": {

"agent_id": null,
"user_id": null,
"endpoint_id": null,
"source_entry_id": "abcd-12"

},
"source": "personal"

}, {
"column_values": ["Charlie", "Boblin", "5555556", "5554444", "5552222", "mail2@example.com", null, false, true],
"relations": {

"agent_id": null,
"user_id": null,
"endpoint_id": null,
"source_entry_id": "efgh-34"

},
"source": "personal"

}
]

}

Personal contact purge Client -> Server

{
"class": "people_purge_personal_contacts",

}

Server -> Client

{
"class": "people_personal_contacts_purged",

}

Personal contact raw Client -> Server

{
"class": "people_personal_contact_raw",
"source": "personal",
"source_entry_id": "abcd-1234"

}

Server -> Client

{
"class": "people_personal_contact_raw_result",
"source": "personal",
"source_entry_id": "abcd-1234",
"contact_infos": {

"firstname": "Bob",
"lastname": "Wonderland"

428 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

...
}

}

Create personal contact Client -> Server

{
"class": "people_create_personal_contact",
"contact_infos": {

"firstname": "Bob",
"lastname": "Wonderland",
...

}
}

Server -> Client

{
"class": "people_personal_contact_created"

}

Delete personal contact Client -> Server

{
"class": "people_delete_personal_contact",
"source": "personal",
"source_entry_id": "abcd-1234"

}

Server -> Client

{
"class": "people_personal_contact_deleted",
"source": "personal",
"source_entry_id": "abcd-1234"

}

Edit personal contact Client -> Server

{
"class": "people_edit_personal_contact",
"source": "personal",
"source_entry_id": "abcd-1234",
"contact_infos": {

"firstname": "Bob",
"lastname": "Wonderland",
...

}
}

Server -> Client

{
"class": "people_personal_contact_raw_update",
"source": "personal",
"source_entry_id": "abcd-1234"

}

Import personal contacts Client -> Server

1.13. Contributors 429

XiVO Documentation, Release 16.08

{
"class": "people_import_personal_contacts_csv",
"csv_contacts": "firstname,lastname\r\nBob,the Builder\r\n,Alice,Wonderland\r\n,BobMissingFields\r\n"

}

Server -> Client

{
"class": "people_import_personal_contacts_csv_result",
"created_count": 2,
"failed": [

{
"line": 3,
"errors": [

"missing fields"
]

}

]
}

Export personal contacts Client -> Server

{
"class": "people_export_personal_contacts_csv",

}

Server -> Client

{
"class": "people_export_personal_contacts_csv_result",
"csv_contacts": "firstname,lastname\r\nBob,the Builder\r\n,Alice,Wonderland\r\n"

}

Service

• class : featuresput

Call Filtering

• function : incallfilter

• value : true, false activate deactivate filtering

Client -> Server

{"class": "featuresput", "commandid": 1326845972, "function": "incallfilter", "value": true}

Server > Client

{
"class": "getlist",
"config": {"incallfilter": true},
"function": "updateconfig",
"listname": "users",
"tid": "2",
"timenow": 1361456398.52, "tipbxid": "xivo" }

DND

• function : enablednd

430 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• value : true, false activate deactivate DND

Client -> Server

{"class": "featuresput", "commandid": 1088978942, "function": "enablednd", "value": true}

Server > Client

{
"class": "getlist",
"config": {"enablednd": true},
"function": "updateconfig",
"listname": "users",
"tid": "2",
"timenow": 1361456614.55, "tipbxid": "xivo"}

Recording

• function : enablerecording

• value : true, false

Activate / deactivate recording for a user, extension call recording has to be activated : Services->IPBX->IPBX
services->Extension

Client -> Server

{"class": "featuresput", "commandid": 1088978942, "function": "enablerecording", "value": true, "target" : "7" }

Server > Client

{
"class": "getlist",
"config": {"enablerecording": true},
"function": "updateconfig",
"listname": "users",
"tid": "7",
"timenow": 1361456614.55, "tipbxid": "xivo"}

Unconditional Forward Forward the call at any time, call does not reach the user

• function : fwd

Client -> Server

{
"class": "featuresput", "commandid": 2082138822, "function": "fwd",
"value": {"destunc": "1002", "enableunc": true}

}

Server > Client

{
"class": "getlist",
"config": {"destunc": "1002", "enableunc": true},
"function": "updateconfig",
"listname": "users",
"tid": "2",
"timenow": 1361456777.98, "tipbxid": "xivo"}

Forward On No Answer Forward the call to another destination if the user does not answer

• function : fwd

1.13. Contributors 431

XiVO Documentation, Release 16.08

Client -> Server

{
"class": "featuresput", "commandid": 1705419982, "function": "fwd",
"value": {"destrna": "1003", "enablerna": true}
}

Server > Client

{
"class": "getlist",
"config": {"destrna": "1003", "enablerna": true},
"function": "updateconfig",
"listname": "users",
"tid": "2",
"timenow": 1361456966.89, "tipbxid": "xivo" }

Forward On Busy Forward the call to another destination when the user is busy

• function : fwd

Client -> Server

{
"class": "featuresput", "commandid": 568274890, "function": "fwd",
"value": {"destbusy": "1009", "enablebusy": true}
}

Server > Client

{
"class": "getlist",
"config": {"destbusy": "1009", "enablebusy": true},
"function": "updateconfig",
"listname": "users",
"tid": "2",
"timenow": 1361457163.77, "tipbxid": "xivo"
}

Statistics

Subscribe to queues stats This message can be sent from the client to enable statitics update on queues

Client -> Server

{"commandid":36,"class":"subscribetoqueuesstats"}

``Server > Client``

Get queues stats When statistic update is enable by sending message Subscribe to queues stats.

The first element of the message is the queue id

{"stats": {"10": {"Xivo-LoggedAgents": 0}},
"class": "getqueuesstats", "timenow": 1384509582.88}

{"stats": {"1": {"Xivo-WaitingCalls": 0}},
"class": "getqueuesstats", "timenow": 1384509582.89}

{"stats": {"1": {"Xivo-TalkingAgents": "0", "Xivo-AvailableAgents": "1", "Xivo-EWT": "6"}},
"class": "getqueuesstats", "timenow": 1384512350.25}

Status These messages can also be received without any request as unsolicited messages.

432 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

User status User status is to manage user presence

• Request user status update

Client -> Server

{"class": "getlist", "commandid": 107712156,
"function": "updatestatus",
"listname": "users",
"tid": "14", "tipbxid": "xivo"}

Server > Client

{"class": "getlist",
"function": "updatestatus",
"listname": "users",
"status": {"availstate": "outtolunch", "connection": "yes"},

"tid": "1", "timenow": 1364994093.48, "tipbxid": "xivo"}

• Change User status

Client -> Server

{"availstate": "away",
"class": "availstate",
"commandid": 1946092392,
"ipbxid": "xivo",

"userid": "1"}

Server > Client

{"class": "getlist",
"function": "updatestatus",
"listname": "users",
"status": {"availstate": "away"},
"tid": "1", "timenow": 1370523352.6, "tipbxid": "xivo"}

Phone status

• tid is the line id, found in linelist from message User configuration

Client -> Server

{"class": "getlist", "commandid": 107712156,
"function": "updatestatus",
"listname": "phones", "tid": "8", "tipbxid": "xivo"}

Server > Client

{"class": "getlist",
"function": "updatestatus",
"listname": "phones",
"status": {"hintstatus": "0"},
"tid": "1",
"timenow": 1364994093.48,
"tipbxid": "xivo"}

Queue status Client -> Server

{"commandid":17,"class":"getlist","tid":"8","tipbxid":"xivo","function":"updatestatus","listname":"queues"}

Server > Client

1.13. Contributors 433

XiVO Documentation, Release 16.08

{"function": "updatestatus", "listname": "queues", "tipbxid": "xivo", "timenow": 1382710430.54,
"status": {"agentmembers": ["1","5"], "phonemembers": ["8"]},
"tid": "8", "class": "getlist"}

Agent status

• tid is the agent id.

Client -> Server

{"class": "getlist",
"commandid": <random_integer>,
"function": "updatestatus",
"listname": "agents",
"tid": "635",
"tipbxid": "xivo"}

Server > Client

{"class": "getlist",
"listname": "agents",
"function": "updatestatus",
"tipbxid": "xivo",
"tid": 635,
"status": {

"availability": "logged_out",
"availability_since": 1370868774.74,
"channel": null,
"groups": [],
"on_call_acd": false,
"on_call_nonacd": false,
"on_wrapup": false,
"phonenumber": null,
"queues": [

"113"
]

}}

• availability can take the values:

– logged_out

– available

– unavailable

– on_call_nonacd_incoming_internal

– on_call_nonacd_incoming_external

– on_call_nonacd_outgoing_internal

– on_call_nonacd_outgoing_external

• availability_since is the timestamp of the last availability change

• queues is the list of queue ids from which the agent receives calls

Switchboard

Answer This allows the switchboard operator to answer an incoming call or unhold a call on-hold.

{"class": "answer", "uniqueid": "12345667.89"}

434 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Unsolicited Messages These messages are received whenever one of the following corresponding event occurs:
sheet message on incoming calls, or updatestatus when a phone status changes.

Sheet This message is received to display customer information if configured at the server side

{
"timenow": 1361444639.61,
"class": "sheet",
"compressed": true,
"serial": "xml",
"payload": "AAADnnicndPBToNAEAbgV1n3XgFN1AP...................",
"channel": "SIP/e6fhff-00000007"

}

How to decode payload :

>>> b64content = base64.b64decode(<payload content>)
>>> # 4 first cars are the encoded lenght of the xml string (in Big Endian format)
>>> xmllen = struck.unpack('>I',b64content[0:4])
>>> # the rest is a compressed xml string
>>> xmlcontent = zlib.decompress(toto[4:])
>>> print xmlcontent

<?xml version="1.0" encoding="utf-8"?>
<profile>

<user>
<internal name="ipbxid"><![CDATA[xivo]]></internal>
<internal name="where"><![CDATA[dial]]></internal>
<internal name="channel"><![CDATA[SIP/barometrix_jyldev-00000009]]></internal>
<internal name="focus"><![CDATA[no]]></internal>
<internal name="zip"><![CDATA[1]]></internal>
<sheet_qtui order="0010" name="qtui" type="None"><![CDATA[]]></sheet_qtui>
<sheet_info order="0010" name="Nom" type="title"><![CDATA[0230210083]]></sheet_info>
<sheet_info order="0030" name="Origine" type="text"><![CDATA[extern]]></sheet_info>
<sheet_info order="0020" name="Num\xc3\xa9ro" type="text"><![CDATA[0230210083]]></sheet_info>
<systray_info order="0010" name="Nom" type="title"><![CDATA[Maric\xc3\xa9 Sapr\xc3\xaftch\xc3\xa0]]></systray_info>
<systray_info order="0030" name="Origine" type="body"><![CDATA[extern]]></systray_info>
<systray_info order="0020" name="Num\xc3\xa9ro" type="body"><![CDATA[0230210083]]></systray_info>

</user>
</profile>

The xml file content is defined by the following xsd file: xivo-javactilib/src/main/xsd/sheet.xsd
(online version)

Phone status update Received when a phone status change

• class : getlist

• function : updatestatus

• listname : phones

{
"class": "getlist",
"function": "updatestatus",
"listname": "phones",
"tipbxid": "xivo",
"timenow": 1361447017.29,
.........

}

tid is the the object identification

Example of phone messages received when a phone is ringing :

1.13. Contributors 435

https://www.gitorious.org/xivo/xivo-javactilib/blobs/master/src/main/xsd/sheet.xsd

XiVO Documentation, Release 16.08

{.... "status": {"hintstatus": "0"}, "tid": "3"}
{.... "status": {"hintstatus": "8"}, "tid": "3"}

Update notification

Register agent status update The register_agent_status_update command is used to register to the status up-
dates of a list of agent. Once registered to a agent’s status, the client will receive all Agent status update events for
the registered agents.

This command should be sent when an agent is displayed in the people xlet to be able to update the agent status
icon.

The Unregister agent status update command should be used to stop receiving updates.

Client -> Server

{
"class": "register_agent_status_update",
"agent_ids": [["<xivo-uuid>", "<agent-id1>"],

["<xivo-uuid>", "<agent-id2>"],
...,
["<xivo-uuid>", "<agent-idn>"]],

"commandid": <commandid>
}

Unregister agent status update The unregister_agent_status_update command is used to unregister from the
status updates of a list of agent.

Once unregistered, the client will stop receiving the Agent status update events for the specified agents.

Client -> Server

{
"class": "unregister_agent_status_update",
"agent_ids": [["<xivo-uuid>", "<agent-id1>"],

["<xivo-uuid>", "<agent-id2>"],
...,
["<xivo-uuid>", "<agent-idn>"]],

"commandid": <commandid>
}

Agent status update The agent_status_update event is received when the presence of an agent changes.

To receive this event, the user must first register to the event for a specified agent using the Register agent status
update command.

To stop receiving this event, the user must send the Unregister agent status update command.

• data, a dictionary containing 3 fields:

– agent_id, is an integer containing the ID of the user affected by this status change

– xivo_uuid: a string containing the UUID of the XiVO that sent the status update

– status: a string containing the new status, “logged_in” or “logged_out”

Server -> Client

{
"class": "agent_status_update",
"data": {
"agent_id": 42,
"xivo_uuid": "<the-xivo-uuid>",

436 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

"status": "<status-name>"
}

}

The agent_status_update event contains the same data as the agent_status_update. The latter should be preferred
to the former for uses that do not require a persistent connection to xivo-ctid.

Register endpoint status update The register_endpoint_status_update command is used to register to the status
updates of a list of lines. Once registered to a endpoint’s status, the client will receive all Endpoint status update
events for the registered agents.

This command should be sent when a endpoint is displayed in the people xlet to be able to update the agent status
icon.

The Unregister endpoint status update command should be used to stop receiving updates.

Client -> Server

{
"class": "register_endpoint_status_update",
"endpoint_ids": [["<xivo-uuid>", "<endpoint-id1>"],

["<xivo-uuid>", "<endpoint-id2>"],
...,
["<xivo-uuid>", "<endpoint-idn>"]],

"commandid": <commandid>
}

Unregister endpoint status update The unregister_endpoint_status_update command is used to unregister
from the status updates of a list of agent.

Once unregistered, the client will stop receiving the Endpoint status update events for the specified agents.

Client -> Server

{
"class": "unregister_endpoint_status_update",
"endpoint_ids": [["<xivo-uuid>", "<endpoint-id1>"],

["<xivo-uuid>", "<endpoint-id2>"],
...,
["<xivo-uuid>", "<endpoint-idn>"]],

"commandid": <commandid>
}

Endpoint status update The endpoint_status_update event is received when the status of a line changes.

To receive this event, the user must first register to the event for a specified endpoint using the Register endpoint
status update command.

To stop receiving this event, the user must send the Unregister endpoint status update command.

• data, a dictionary containing 3 fields:

– endpoint_id, is an integer containing the ID of the line affected by this status change

– xivo_uuid: a string containing the UUID of the XiVO that sent the status update

– status: an integer matching an entry in the cti hint configuration

Server -> Client

{
"class": "endpoint_status_update",
"data": {
"endpoint_id": 42,

1.13. Contributors 437

XiVO Documentation, Release 16.08

"xivo_uuid": "<the-xivo-uuid>",
"status": <hint-status>

}
}

The endpoint_status_update event contains the same data as the endpoint_status_update. The latter should be
preferred to the former for uses that do not require a persistent connection to xivo-ctid.

Register user status update The register_user_status_update command is used to register to the status updates
of a list of user. Once registered to a user’s status, the client will receive all User status update events for the
registered users.

This command should be sent when a user is displayed in the people xlet to be able to update the presence status
icon.

The Unregister user status update command should be used to stop receiving updates.

Client -> Server

{
"class": "register_user_status_update",
"user_ids": [["<xivo-uuid>", "<user-id1>"],

["<xivo-uuid>", "<user-id2>"],
...,
["<xivo-uuid>", "<user-idn>"]],

"commandid": <commandid>
}

Unregister user status update The unregister_user_status_update command is used to unregister from the
status updates of a list of user.

Once unregistered, the client will stop receiving the User status update events for the specified users.

Client -> Server

{
"class": "unregister_user_status_update",
"user_ids": [["<xivo-uuid>", "<agent-id1>"],

["<xivo-uuid>", "<agent-id2>"],
...,
["<xivo-uuid>", "<agent-idn>"]],

"commandid": <commandid>
}

User status update The user_status_update event is received when the presence of a user changes.

To receive this event, the user must first register to the event for a specified user using the Register user status
update command.

To stop receiving this event, the user must send the Unregister user status update command.

• data, a dictionary containing 3 fields:

– user_id, is an integer containing the ID of the user affected by this status change

– xivo_uuid: a string containing the UUID of the XiVO that sent the status update

– status: a string containing the new status of the user based on the cti profile configuration

Note: When multiple XiVO share user statuses, the cti profile configuration for presences and phone statuses
should match on all XiVO to be displayed properly

438 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Server -> Client

{
"class": "user_status_update",
"data": {
"user_id": 42,
"xivo_uuid": "<the-xivo-uuid>",
"status": "<status-name>"

}
}

The user_status_update event contains the same data as the user_status_update. The latter should be preferred to
the former for uses that do not require a persistent connection to xivo-ctid.

CTI server implementation

In the git repository git://github.com/xivo-pbx/xivo-ctid.git

• cti_config handles the configuration coming from the WEBI

• interfaces/interface_ami, together with asterisk_ami_definitions, amiinterpret and xivo_ami handle the AMI
connections (asterisk)

• interfaces/interface_info handles the CLI-like connections

• interfaces/interface_webi handles the requests and signals coming from the WEBI

• interfaces/interface_cti handles the clients’ connections, with the help of client_connection, and it often
involves cti_command too

• innerdata is meant to be the place where all statuses are computed and stored

The main loop uses select() syscall to dispatch the tasks according to miscellaneous incoming requests.

Requirements for innerdata:

• the properties fetched from the WEBI configuration shall be stored in the relevant xod_config structure

• the properties fetched from elsewhere shall be stored in the relevant xod_status structure

• at least two kinds of objects are not “predefined” (as are the phones or the queues, for instance)

– the channels (in the asterisk SIP/345-0x12345678 meaning)

– the group and queue members shall be handled in a special way each

The purpose of the ‘relations’ field, in the various structures is to keep track of relations and cross-relations
between different objects (a phone logged in as an agent, itself in a queue, itself called by some channels belonging
to phones ...).

CTI server Message flow

Messages sent from the CTI clients to the server are received by the CTIServer class. The CTIServer
then calls interface_cti.CTI class manage_connection method. The interface_cti uses his
_cti_command_handler member to parse and run the command. The CTICommandHandler get a list of
classes that handle this message from the CTICommandFactory. Then the the interface_cti.CTI calls
run_commands on the handler, which returns a list of all commands replies.

To implement a new message in the protocol you have to create a new class that inherits the CTICommand class.
Your new class should have a static member caller required_fields which is a list of required fields for this
class. Your class should also have a conditions static member which is a list of tupples of conditions to detect
that an incoming message matches this class. The __init__ of your class is responsible for the initialization
of it’s fields and should call super(<ClassName>, self).__init__(msg). Your class should register
itself to the CTICommandFactory.

1.13. Contributors 439

XiVO Documentation, Release 16.08

from xivo_cti.cti.cti_command import CTICommand
from xivo_cti.cti.cti_command_factory import CTICommandFactory

class InviteConfroom(CTICommand):
required_fields = ['class', 'invitee']
conditions = [('class', 'invite_confroom')]
def __init__(self):

super(InviteConfroom, self).__init__(msg)
self._invitee = msg['invitee']

CTICommandFactory.register_class(InviteConfroom)

Each CTI commands has a callback list that you can register to from anywhere. Each callback function will be
called when this message is received with the command as parameter.

Refer to MeetmeList.__init__ for a callback registration example and to MeetmeList.invite for the
implementation of a callback.

from xivo_cti.cti.commands.invite_confroom import InviteConfroom

class MySuperClass(object):
def __init__(self):

InviteConfroom.register_callback(self.invite_confroom_handler)

def invite_confroom_handler(self, invite_confroom_command):
Do your stuff here.
if ok:

return invite_confroom_command.get_message('Everything is fine')
else:

return invite_confroom_command.get_warning('I don't know you, go away', True)

Note: The client’s connection is injected in the command instance before calling callbacks functions. The client’s
connection is an interface_cti.CTI instance.

1.13.13 Database

Adding a Migration Script

Strating with XiVO 14.08, the database migration is handled by alembic.

The XiVO migration scripts can be found in the xivo-manage-db repository.

On a XiVO, they are located in the /usr/share/xivo-manage-db directory.

To add a new migration script from your developer machine, go into the root directory of the xivo-manage-db
repository. There should be an alembic.ini file in this directory. You can then use the following command to
create a new migration script:

alembic revision -m "<description>"

This will create a file in the alembic/versions directory, which you’ll have to edit.

When the migration scripts are executed, they use a connection to the database with the role/user asterisk.
This means that new objects that are created in the migration scripts will be owned by the asterisk role and it
is thus not necessary (nor recommended) to explicitly grant access to objects to the asterisk role (i.e. no “GRANT
ALL” command after a “CREATE TABLE” command).

440 Chapter 1. Table of Contents

http://alembic.readthedocs.org
https://github.com/xivo-pbx/xivo-manage-db

XiVO Documentation, Release 16.08

1.13.14 Diagrams

Agent states

Graphs representing states and transitions between agent states. Used in Agent status dashboard and agent list.

Download (DIA)

Architecture

Fig. 1.105: Relationships between the components of Xivo. (source)

1.13.15 Provisioning

This section describes the informations and tools for xivo-provd.

Managing DHCP server configuration

This page considers the configuration files of the DHCP server in /etc/dhcp/dhcpd_update/.

Who modifies the files

The files are updated with the command dhcpd-update, which is also run when updating the provisioning
plugins. This commands fetches configurations files from the provd.xivo.io server.

1.13. Contributors 441

XiVO Documentation, Release 16.08

How to update the source files

Ensure your modifications are working

• On a XiVO, edit manually the file /etc/dhcp/dhcpd_update/*.conf

• service isc-dhcp-server restart

• If errors are shown in /var/log/daemon.log, check your modifications

Edit the files

• Edit the files in the Git repo xivo-provd-plugins, directory dhcp/

• Push your modifications

• Go in dhcp/

• Run make upload to push your modifications to provd.xivo.io. There is no testing version of
these files. Once the files are uploaded, they are available for all XiVO installations.

Managing Plugins

Git Repository

Most plugin-related files are available in the xivo-provd-plugins repository. Following examples are relative to the
repository directory tree. Any modifications should be preceeded by a git pull.

Updating a Plugin

We will be using the xivo-cisco-spa plugins family as an example on this page

There is one directory per family. Here is the directory structure for xivo-cisco-spa:

plugins/xivo-cisco-spa/
+-- model_name_xxx
+-- model_name_xxx
+-- common
+-- build.py

Every plugin has a folder called common which regoups common ressources for each model. Every model has its
own folder with its version number.

After modifying a plugin, you must increment the version number. You can modifiy the file plugin-info to
change the version number:

plugins/xivo-cisco-spa/
+-- model_name_xxx

+-- plugin-info

Important: If ever you modify the folder common, you must increment the version number of all the models.

Use Case: Update Firmwares for a given plugin Let us suppose we want to update firmwares for xivo-snom
from 8.7.3.25 to 8.7.3.25 5. Here are the steps to follow :

1. Copy folder plugins/xivo-snom/8.7.3.25 to plugins/xivo-snom/8.7.3.25.5

2. Update VERSION number in plugins/xivo-snom/8.7.3.25.5/entry.py

3. Update VERSION number in plugins/xivo-snom/8.7.3.25.5/plugin-info

442 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-provd-plugins.git

XiVO Documentation, Release 16.08

4. Download new firmwares (.bin files from snom website)

5. Update VERSION number and URIs in plugins/xivo-snom/8.7.3.25.5/pkgs/pkgs.db (with uris of down-
loaded files from snom website)

6. Update sizes and sha1sums in plugins/xivo-snom/8.7.3.25.5/pkgs/pkgs.db (using helper script xivo-
tools/dev-tools/check_fw)

7. Update plugins/xivo-snom/build.py (duplicate and update section 8.7.3.25 > 8.7.3.25.5)

Test your changes You have three different methods to test your changes on your development machine.

Always increase plugin version (easiest) If the production version is 0.4, change the plugin version to 0.4.01,
make your changes and upload to testing (see below).

Next modification will change the plugin version to 0.4.02, etc. When you are finished making changes, change
the version to 0.5 and upload one last time.

Edit directly on XiVO Edit the files in /var/lib/xivo-provd/plugins.

To apply your changes, go in xivo-provd-cli and run:

plugins.reload('xivo-cisco-spa-7.5.4')

Disable plugin caching Edit /etc/xivo/provd/provd.conf and add the line:

cache_plugin: True

Empty /var/cache/xivo-provd and restart provd.

Make your changes in provd-plugins, update the plugin version to the new one and upload to testing (see below).
Now, every time you uninstall/install the plugin, the new plugin will be fetched from testing, instead of being
cached, even without changing the version.

Uploading to testing Before updating a plugin, it must be passed through the testing phase. Once it has been
approved it can be uploaded to the production server

Important: Before uploading a plugin in the testing provd repository, make sure to git pull the xivo-provd-plugins
git repository.

To upload the modified plugin in the testing repo on provd.xivo.io, you can execute the following command:

$ make upload

Afterwards, in the web-interface, you must modify the URL in section Configuration → Provisioning → General
to:

`http://provd.xivo.io/plugins/1/testing/`

You can then update the list of plugins and check the version number for the plugin that you modified. Don’t
forget to install the plugin to test it.

Mass-install all firmwares related to a given plugin Using xivo-provd-cli on a xivo server, one can mass-install
firmwares. Following example installs all firmwares for xivo-snom 8.7.3.25.5 plugin (note the auto-completion):

1.13. Contributors 443

http://wiki.snom.com/Firmware/V8/Patch

XiVO Documentation, Release 16.08

xivo-provd-cli> plugins.installed().keys()
[u'xivo-snom-8.7.3.15',
u'xivo-cisco-sccp-legacy',
u'xivo-snom-8.4.35',
u'xivo-snom-8.7.3.25',
u'xivo-aastra-switchboard',
u'xivo-aastra-3.2.2-SP3',
u'xivo-aastra-3.2.2.1136',
u'xivo-cisco-sccp-9.0.3',
u'null',
u'xivo-snom-8.7.3.25.5']

xivo-provd-cli> p = plugins['xivo-snom-8.7.3.25.5']
xivo-provd-cli> p.install_all()

Uploading to stable Once checked, you must synchronize the plugin from testing to stable. If applicable, you
should also update the archive repo.

To download the stable and archive plugins:

$ make download-stable
$ make download-archive

Go to the plugins/_build directory and delete the plugins that are going to be updated. Note that if you are not
updating a plugin but you are instead removing it “once and for all”, you should instead move it to the archive
directory:

$ rm -fi stable/xivo-cisco-spa*

Copy the files from the directory testing to stable:

$ cp testing/xivo-cisco-spa* stable

Go back to the plugins directory and upload the files to the stable and archive repo:

$ make upload-stable
$ make upload-archive

The file are now up to date and you can test by putting back the stable url in the web-interface’s configuration:

`http://provd.xivo.io/plugins/1/stable/`

Testing a new SIP phone

Let’s suppose you have received a brand new SIP phone that is not supported by the provisioning system of XiVO.
You would like to know if it’s possible to add auto-provisioning support for it. That said, you have never tested
the phone before.

This guide will help you get through the different steps that are needed to add auto-provisioning support for a
phone to XiVO.

Prerequisites

Before continuing, you’ll need the following:

• a private LAN where only your phones and your test machines are connected to it, i.e. a LAN that you fully
control.

444 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Configuring a test environment

Although it’s possible to do all the testing directly on a XiVO, it’s more comfortable and usually easier to do on a
separate, dedicated machine.

That said, you’ll still need a XiVO near, since we’ll be doing the call testing part on it and not on a separate
asterisk.

So, for the rest of this guide, we’ll suppose you are doing your tests on a Debian jessie with the following
configuration:

• Installed packages:

isc-dhcp-server tftpd-hpa apache2

• Example content of the /etc/dhcp/dhcpd.conf file (restart isc-dhcp-server after modifica-
tion):

ddns-update-style none;

default-lease-time 7200;
max-lease-time 86400;

log-facility local7;

subnet 10.34.1.0 netmask 255.255.255.0 {
authoritative;

range 10.34.1.200 10.34.1.250;

option subnet-mask 255.255.255.0;
option broadcast-address 10.34.1.255;
option routers 10.34.1.6;

option ntp-servers 10.34.1.6;
option domain-name "my-domain.example.org";
option domain-name-servers 10.34.1.6;

log(concat("[VCI: ", option vendor-class-identifier, "]"));
}

• Example content of the /etc/default/tftpd-hpa file (restart tftpd-hpa after modifcation):

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/srv/tftp"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="--secure --verbose"

With this configuration, files served via TFTP will be in the /srv/tftp directory and those served via HTTP in
the /var/www directory.

Testing

Adding auto-provisioning support for a phone is mostly a question of finding answers to the following questions.

1. Is it worth the time adding auto-provisioning support for the phone ?

Indeed. Adding quality auto-provisioning support for a phone to XiVO requires a non negligible amount of
work, if you don’t meet any real problem and are comfortable with provisioning in XiVO. Not all phones
are born equal. Some are cheap. Some are old and slow. Some are made to work on proprietary system and
will only work in degraded mode on anything else.

That said, if you are uncertain, testing will help you clarifying your idea.

1.13. Contributors 445

XiVO Documentation, Release 16.08

2. What is the vendor, model, MAC address and firmware version (if available) of your phone ?

Having the vendor and model name is essential when looking for documentation or other information. The
MAC address will be needed later on for some tests, and it’s always good to know the firmware version of
the phone if you are trying to upgrade to a newer firmware version and you’re having some troubles, and
when reading the documentation.

3. Is the official administrator guide/documentation available publicly on the vendor web site ? Is it available
only after registering and login to the vendor web site ?

Having access to the administrator guide/documentation of the phone is also essential. Once you’ve found
it, download it and keep the link to the URL. If you can’t find it, it’s probably not worth going further.

4. Is the latest firmware of the phone available publicly on the vendor web site ? Is it available only after
registering and login to the vendor web site ?

Good auto-provisioning support means you need to have an easy way to download the latest firmware of the
phone. Ideally, this mean the firmware is downloadable from an URL, with no authentication whatsoever.
In the worst case, you’ll need to login on some web portal before being able to download the firmware,
which will be cumbersome to automatize and probably fragile. If this is the case, it’s probably not worth
going further.

5. Does the phone need other files, like language files ? If so, are these files available publicly on the vendor
web site ? After registering ?

Although you might not be able to answer to this question yet because you might not know if the phone
needs such files to be either in English or in French (the two officially supported language in XiVO), you’ll
need to have an easy access to these files if its the case.

6. Does the phone supports auto-provisioning via DHCP + HTTP (or TFTP) ?

The provisioning system in XiVO is based on the popular method of using a DHCP server to tell the phone
where to download its configuration files, and a HTTP (or TFTP) server to serve these configuration files.
Some phones support other methods of provisioning (like TR-069), but that’s of no use here. Also, if
your phone is only configurable via its web interface, although it’s technically possible to configure it
automatically by navigating its web interface, it’s an extremely bad idea since it’s impossible to guarantee
that you’ll still be able to provision the phone on the next firmware release.

If the phone supports both HTTP and TFTP, pick HTTP, it usually works better with the provisioning server
of XiVO.

7. What are the default usernames/passwords on the phone to access administrator menus (phone UI and web
UI) ? How do you do a factory reset of the phone ?

Although this step is optional, it might be handy later to have these kind of information. Try to find them
now, and note them somewhere.

8. What are the DHCP options and their values to send to the phones to tell it where its configuration files are
located ?

Once you know that the phone supports DHCP + HTTP provisioning, the next question is what do you need
to put in the DHCP response to tell the phone where its configuration files are located. Unless the admin
documentation of the phone is really poor, this should not be too hard to find.

Once you have found this information, the easiest way to send it to the phone is to create a custom host
declaration for the phone in the /etc/dhcp/dhcpd.conf file, like in this example:

host my-phone {
hardware ethernet 00:11:22:33:44:55;
option tftp-server-name "http://169.254.0.1/foobar.cfg";

}

9. What are the configuration files the phone needs (filename and content) and what do we need to put in it for
the phone to minimally be able to make and receive calls on XiVO ?

446 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Now that you are able to tell your phone where to look for its configuration files, you need to write these files
with the right content in it. Again, at this step, you’ll need to look through the documentation or examples
to answer this question.

Note that you only want to have the most basic configuration here, i.e. only configure 1 line, with the right
SIP registrar and proxy, and the associated username and password.

10. Do basic telephony services, like transfer, works correctly when using the phone buttons ?

On most phones, it’s possible to do transfer (both attended and direct), three-way conferences or put some-
one on hold directly from the phone. Do some tests to see if it works correctly.

Also at this step, it’s a good idea to check how the phone handle non-ascii characters, either in the caller ID
or in its configuration files.

11. Does other “standard” features work correctly on the phone ?

For quality auto-provisioning support, you must find how to configure and make the following features
work:

• NTP server

• MWI

• function keys (speed dial, BLF, directed pickup / call interception)

• timezone and DST support

• multi language

• DTMF

• hard keys, like the voicemail hard key on some phone

• non-ASCII labels (line name, function key label)

• non-ASCII caller ID

• backup proxy/registrar

• paging

Once you have answered all these questions, you’ll have a good idea on how the phone works and how to configure
it. Next step would be to start the development of a new provd plugin for your phone for a specific firmware
version.

IOT Phones FK = Funckey

HK = HardKey

Y = Supported

MN = Menu

N = Not supported

NT = Not tested

NYT = Not yet tested

SK = SoftKey

model
Provisioning Y
H-A Y
Directory XIVO Y
Funckeys 8
Supported programmable keys

Continued on next page

1.13. Contributors 447

XiVO Documentation, Release 16.08

Table 1.10 – continued from previous page
model

User with supervision function Y
Group Y
Queue Y
Conference Room with supervision function Y
General Functions
Online call recording N
Phone status Y
Sound recording Y
Call recording Y
Incoming call filtering Y
Do not disturb Y
Group interception Y
Listen to online calls Y
Directory access Y
Filtering Boss - Secretary Y
Transfers Functions
Blind transfer HK
Indirect transfer HK
Forwards Functions
Disable all forwarding Y
Enable/Disable forwarding on no answer Y
Enable/Disable forwarding on busy Y
Enable/Disable forwarding unconditional Y
Voicemail Functions
Enable voicemail with supervision function Y
Reach the voicemail Y
Delete messages from voicemail Y
Agent Functions
Connect/Disconnect a static agent Y
Connect a static agent Y
Disconnect a static agent Y
Parking Functions
Parking Y
Parking position Y
Paging Functions
Paging Y

Configuring a NAT Environment

This is a configuration example to simulate the case of a hosted XiVO, i.e. an environment where:

• the XiVO has a public IP address

• the phones are behind a NAT

In this example, we’ll reproduce the following environment:

Where:

• the XiVO is installed inside a virtual machine

• the host machine is used as a router, a NAT and a DHCP server for the phones

• the phones are in a separate VLAN than the XiVO, and when they want to interact with it, they must pass
through the NAT

With this setup, we could also put some phones in the same VLAN as the XiVO. We would then have a mixed
environment, where some phones are behind the NAT and some phones aren’t.

448 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Fig. 1.106: Phones behind a NAT

Also, it’s easy to go from a non-NAT environment to a NAT environment with this setup. What you usually have
to do is only to switch your phone from the “XiVO” VLAN to the “phones” VLAN, and reconfiguring the lines
on your XiVO.

The instruction in this page are written for Debian jessie and VirtualBox.

Prerequisite

On the host machine:

• 1 VLAN network interface for the XiVO. In our example, this will be eth0.341, with IP 10.34.1.254/24.

• 1 VLAN network interface for the phones. In our example, this will be eth0.342, with IP 10.34.2.254/24.

On the guest machine, i.e. on the XiVO:

• 1 network adapter attached to the “XiVO” VLAN network interface. In our example, this interface inside
the virtual machine will have the IP 10.34.1.1/24.

Configuration

1. On the host, install the ISC DHCP server:

apt-get install isc-dhcp-server

2. If you do not want it to always be started:

systemctl disable isc-dhcp-server.service

3. Edit the DHCP server configuration file /etc/dhcp/dhcpd.conf. We need to configure the DHCP
server to serve network configuration for the phones (Aastra and Snom in this case):

ddns-update-style none;

default-lease-time 3600;
max-lease-time 86400;

log-facility daemon;

option space Aastra6700;

1.13. Contributors 449

XiVO Documentation, Release 16.08

option Aastra6700.cfg-server-name code 2 = text;
option Aastra6700.contact-rcs code 3 = boolean;

class "Aastra" {
match if substring(option vendor-class-identifier, 0, 6) = "Aastra";

vendor-option-space Aastra6700;
option Aastra6700.cfg-server-name = "http://10.34.1.1:8667/Aastra";
option Aastra6700.contact-rcs false;

}

class "Snom" {
match if substring(option vendor-class-identifier, 0, 4) = "snom";

option tftp-server-name = "http://10.34.1.1:8667";
the domain-name-servers option must be provided for the Snom 715 to work properly
option domain-name-servers 10.34.1.1;

}

subnet 192.168.32.0 netmask 255.255.255.0 {
}

subnet 10.34.1.0 netmask 255.255.255.0 {
}

subnet 10.34.2.0 netmask 255.255.255.0 {
authoritative;

range 10.34.2.100 10.34.2.199;

option subnet-mask 255.255.255.0;
option broadcast-address 10.34.2.255;
option routers 10.34.2.254;

option ntp-servers 10.34.1.1;
}

4. If you have many network interfaces on your host machine, you might also want to edit
/etc/default/isc-dhcp-server to only include the “phones” VLAN network interface in the “IN-
TERFACES” variable.

5. Start the isc-dhcp-server:

systemctl start isc-dhcp-server.service

6. Add an iptables rules to do NAT:

iptables -t nat -A POSTROUTING -o eth0.341 -j MASQUERADE

7. Make sure that IP forwarding is enabled:

sysctl -w net.ipv4.ip_forward=1

8. Put all the phones in the “phones” VLAN on your switch

9. Activate the NAT and Monitoring options on the Services → IPBX → General settings → SIP Protocol
page of your XiVO.

Note that the iptables rules and the IP forwarding setting are not persistent. If you don’t make them persistent (not
documented here), don’t forget to reactivate them each time you want to recreate a NAT environment.

1.13.16 SCCP

xivo-libsccp is an alternative SCCP channel driver for Asterisk. It was originally based on chan_skinny.

450 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

This page is intended for developers and people interested in using xivo-libsccp on something other than XiVO.

Installation from the git repository

Warning: If you just want to use your SCCP phones with XiVO, refer to SCCP Configuration instead.

The following packages are required to compile xivo-libsccp on Debian.

• build-essential

• asterisk-dev

apt-get update && apt-get install build-essential asterisk-dev

git clone https://github.com/xivo-pbx/xivo-libsccp.git
cd xivo-libsccp
make
make install

Configuration

Warning: If you just want to use your SCCP phones with XiVO, refer to SCCP Configuration instead.

See sccp.conf.sample for a configuration file example.

FAQ

Q. When is this *feature X* will be available?
A. The order in which we implement features is based on our client needs. Write

us an email that clearly explain your setup and what you would like to do and we
will see what we can do. We don't provide any timeline.

Q. I want to use the Page() application to call many phones at the same time.
A. Here a Page() example for a one way call (half-duplex):

exten => 1000,1,Verbose(2, Paging to external cisco phone)
same => n,Page(sccp/100/autoanswer&sccp/101/autoanswer,i,120)

...for a two-way call (full-duplex):

exten => 1000,1,Verbose(2, Paging to external cisco phone)
same => n,Page(sccp/100/autoanswer&sccp/101/autoanswer,di,120)

Network Configuration for 7920/7921

Here’s how to to configure a hostapd based AP on a Debian host so that both a 7920 and 7921 Wi-Fi phone can
connect to it.

The 7920 is older than the 7921 and is pretty limited in its Wi-Fi functionnality:

• 802.11b

• WPA (no WPA2)

• TKIP (no CCMP/AES)

Which means that the most secure WLAN you can set up if you want both phones to connect to it is not that
secure.

1.13. Contributors 451

https://raw.github.com/xivo-pbx/xivo-libsccp/master/configs/sccp.conf.sample

XiVO Documentation, Release 16.08

1. Make sure you have a wireless NIC capable of master mode.

2. If needed, install the firmware-<vendor> package. For example, if you have a ralink card like I do:

apt-get install firmware-ralink

3. Install the other dependencies:

apt-get install wireless-tools hostapd bridge-utils

4. Create an hostapd configuration file in /etc/hostapd/hostapd.sccp.conf with content:
hostapd.sccp.conf

5. Update the following parameters (if applicable) in the configuration file:

• interface

• ssid

• channel

• wpa_passphrase

6. Create a new stanza in /etc/network/interfaces:

iface wlan-sccp inet manual
hostapd /etc/hostapd/hostapd.sccp.conf

7. Up the interface:

ifup wlan0=wlan-sccp

8. Configure your 7920/7921 to connect to the network.

To unlock the phone’s configuration menu on the 7921:

• Press the Navigation Button downwards to enter SETTINGS mode

• Navigate to and select Network Profiles

• Unlock the IP phone’s configuration menu by pressing **#. The padlock icon on the top-right of the
screen will change from closed to open.

When asked for the authentication mode, select something like “Auto” or “AKM”.

You don’t have to enter anything for the username/password.

9. You’ll probably want to bridge your wlan0 interface with another interface, for example a VLAN interface:

brctl addbr br0
brctl addif br0 wlan0
brctl addif br0 eth0.341
ip link set br0 up

10. If you are using virtualbox and your guest interface is bridged to eth0.341, you’ll need to change its config-
uration and bridge it with br0 instead, else it won’t work properly.

Adding Support for a New Phone

This section describes the requirements to consider that a SCCP phone is working with XiVO libsccp.

Basic functionality

• Register on Asterisk

• SCCP reset [restart]

• Call history

452 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

• Date time display

• HA

Telephony

These test should be done with and without direct media enabled

• Emit a call

• Receive a call

• Receive and transfer a call

• Emit a call and transfer the call

• Hold and resume a call

• Features (*0 and others)

• Receive 2 calls simultaneously

• Emit 2 calls simultaneously

• DTMF on an external IVR

Function keys

• Redial

• DND

• Hold

• Resume

• New call

• End call

• Call forward (Enable)

• Call forward (Disable)

• Try each button in each mode (on hook, in progress, etc)

Optional options to test and document

• Phone book

• Caller ID and other display i18n

• MWI

• Speeddial/BLF

1.13.17 Web Interface

Configuration for development

Default error level for XiVO web interface is E_ALL & ~E_DEPRECATED & ~E_USER_DEPRECATED &
~E_RECOVERABLE_ERROR & ~E_STRICT

If you want to display warning or other error in your browser, edit the
/etc/xivo/web-interface/xivo.ini and replace report_type level to 3:

1.13. Contributors 453

XiVO Documentation, Release 16.08

[error]
level = E_ALL
report_type = 3
report_mode = 1
report_func = 1
email = john.doe@example.com
file = /var/log/xivo-web-interface/error.log

You may also edit /etc/xivo/web-interface/php.ini and change the error level, but you will need to
restart the cgi:

service spawn-fcgi restart

Interactive debugging in Eclipse

Instructions for Eclipse 4.5.

On your XiVO:

1. Install php5-xdebug:

apt-get install php5-xdebug

2. Edit the /etc/php5/cgi/conf.d/20-xdebug.ini (or /etc/php5/conf.d/20-xdebug.ini
on wheezy) and add these lines at the end:

xdebug.remote_enable=1
xdebug.remote_host="<dev_host_ip>"

where <dev_host_ip> is the IP address of your machine where Eclipse is installed.

3. Restart spawn-fcgi:

service spawn-fcgi restart

On your machine where Eclipse is installed:

1. Make sure you have Eclipse PDT installed

2. Create a PHP project named xivo-web-interface:

• Choose “Create project at existing location”, using the xivo-web-interface directory

3. In the Window / Preferences / PHP menu:

• Add a new PHP server with the following information:

– Name: anything you want

– Base URL: https://<xivo_ip>

– Path Mapping:

* Path on Server: /usr/share/xivo-web-interface

* Path in Workspace: /xivo-web-interface/src

4. Create a new PHP Web Application debug configuration:

• Choose the PHP server you created in last step

• Pick some file, which can be anything if you don’t “break at first line”

• Uncheck “Auto Generate”, and set the path you want your browser to open when you’ll launch this
debug configuration.

Then, to start a debugging session, set some breakpoints in the code and launch your debug configuration. This
will open the page in your browser, and when the code will hit your breakpoints, you’ll be able to go through the
code step by step, etc.

454 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

1.13.18 XiVO Client

Building the XiVO Client

Building the XiVO Client on Windows platforms

This page explains how to build an executable of the XiVO Client from its sources for Windows.

Windows Prerequisites

Cygwin Cygwin Web site

Click the “setup” link and execute.

During the installer, check the package:

• Devel > git

Qt SDK You need the development files of the Qt 5 library, available on the Qt website. The currently supported
Qt version is 5.5.0.

NSIS (installer only) You will only need NSIS installed if you want to create an installer for the XiVO Client.

NSIS download page

During the installer, choose the full installation.

The XiVO Client NSIS script file uses two plug-ins:

• the NSIS Application Association Registration Plug-in (download page)

• the NsProcess Plug-in (download page)

For each plug-in, download and extract the plug-in and place:

• the DLL from /Plugins in the NSIS/Plugins directory

• the .nsh from /Include in the NSIS/Include directory

Get sources In a Cygwin shell:

git clone git://github.com/xivo-pbx/xivo-client-qt.git
cd xivo-client-qt
touch xivoclient/qt-solutions/qtsingleapplication/src/{QtSingleApplication,QtLockedFile}

Building

Path configuration You must change the values in C:\Cygwin\home\user\xivo-client-qt\build-deps
to match the paths of your installed programs. You must use an editor capable of understanding Unix end of lines,
such as Notepad++.

Replace C:\with /cygdrive/c and backslashes (\) with slashes (/). You must respect the case of the directory
names. Paths containing spaces must be enclosed in double quotes (").

For example, if you installed NSIS in C:\Program Files (x86)\nsis, you should write:

WIN_NSIS_PATH="/cygdrive/c/Program files (x86)/nsis"

1.13. Contributors 455

http://www.cygwin.com/
http://qt-project.org/downloads
http://nsis.sourceforge.net/Download
http://nsis.sourceforge.net/Application_Association_Registration_plug-in#Download
http://nsis.sourceforge.net/NsProcess_plugin
http://notepad-plus-plus.org

XiVO Documentation, Release 16.08

Build In a Cygwin shell:

source build-deps
export PATH=$WIN_QT_PATH/bin:$WIN_MINGW_PATH/bin:$PATH

qmake
mingw32-make SHELL=

Binaries are available in the bin directory.

The version of the executable is taken from the git describe command.

Launch You can launch the built executable with:

source build_deps
PATH=$WIN_QT_PATH/bin:$PATH bin/xivoclient

Package To create the installer:

mingw32-make pack

This will result in a .exe file in the current directory.

Build options To add a console:

qmake CONFIG+=console

To generate debug symbols:

mingw32-make SHELL= DEBUG=yes

Clean
mingw32-make distclean

Building the XiVO Client on GNU/Linux platforms

This page explains how to build an executable of the XiVO Client from its sources for GNU/Linux.

Prerequisites

• Qt5 library development files: Qt website (Ubuntu packages qt5-default qt5-qmake
qttools5-dev-tools qttools5-dev libqt5svg5-dev). The currently supported Qt version
is 5.5.0.

• openGL development library - libGL (Debian package libgl1-mesa-dev)

• Git (Debian package git)

• Generic software building tools : make, g++ ... (Debian package build-essential)

Get sources In a bash shell:

$ git clone git://github.com/xivo-pbx/xivo-client-qt.git

456 Chapter 1. Table of Contents

http://qt-project.org/downloads

XiVO Documentation, Release 16.08

Building You need to have the Qt5 binaries (qmake, lrelease, ...) in your $PATH.

Launch qmake to generate the Makefile:

$ cd xivo-client-qt
$ /path/to/qt5/bin/qmake

This will also generate a file versions.mak that contains version informations about the code being compiled.
It is necessary for compilation and packaging.

You can then launch make:

$ make

Binaries are available in the bin directory.

The version of the executable is taken from the git describe command.

Build options To generate debug symbols:

$ make DEBUG=yes

To compile the unit tests of the XiVO Client:

$ qmake CONFIG+=tests

or, if you have a recent version of Google Mock:

$ qmake CONFIG+=tests CONFIG+=gmock

To compile the XiVO Client ready for functional tests:

$ make FUNCTESTS=yes

Cleaning
$ make distclean

Launch You can launch the built executable with:

$ LD_LIBRARY_PATH=bin bin/xivoclient

Package To create the Debian package, usable on Debian and Ubuntu, you first need to modify build-deps
to locate the Qt 5 installation directory:

$ /path/to/qt5/bin/qmake -spec linux-g++
$ make
$ make pack

This will result in a .deb file in the current directory.

The version of the package is taken from the git describe command.

Building the XiVO Client on Mac OS

This page explains how to build an executable of the XiVO Client from its sources for Mac OS.

Mac OS Prerequisites

1.13. Contributors 457

XiVO Documentation, Release 16.08

Developer tools You will need an Apple developer account to get development tools, such as GCC. To log in or
sign in, go to the Developer portal of Apple. In the Downloads section, get the Command line Tools for XCode
and install them. You might want to get XCode too, but it is rather big.

Qt SDK You need the development files of the Qt 5 library, available on the Qt website. The currently supported
Qt version is 5.5.0.

Get sources In a bash shell, enter:

$ git clone git://github.com/xivo-pbx/xivo-client-qt.git

Building Launch qmake to generate the Makefile:

$ cd xivo-client-qt
$ /path/to/qt5/bin/qmake -spec macx-g++

This will also generate a file versions.mak that contains version informations about the code being compiled.
It is necessary for compilation and packaging.

You can then launch make:

$ make

Binaries are available in the bin directory.

The version of the executable is taken from the git describe command.

Debug build Add DEBUG=yes on the command line:

$ make DEBUG=yes

Cleaning
$ make distclean

Launch You can launch the built executable with:

$ DYLD_LIBRARY_PATH=bin bin/xivoclient.app/Contents/MacOS/xivoclient

Package You need to have the bin directory of Qt in your $PATH.

To create the app bundle:

$ make pack

This will result in a .dmg file in the current directory.

The version of the package is taken from the git describe command.

Building old versions

Building old versions

1.1.23 - Gallifrey

458 Chapter 1. Table of Contents

https://developer.apple.com/downloads/index.action
http://qt-project.org/downloads

XiVO Documentation, Release 16.08

Build

• Download this patch

• git checkout xivo-client-1.1.23

• git apply xivoclient-1.1.23.patch

• Edit Makefile and set the variable QMAKE to the path of your qmake

• make all

Package (macos)

• Edit cross/macos-pack.sh and set QT_PATH

• ./cross/macos-pack.sh

1.0.15 - Dalek

Build (windows)

• Download this patch

• Edit the patch and set the paths to Qt, NSIS, etc.

• (cygwin) git checkout xivo-client-1.0.15

• (cygwin) make all-win32

• (qt cmd) mingw32-make win32-baselib

• (qt cmd) mingw32-make win32-xivoclient

• (qt cmd) mingw32-make win32-plugins

Package (windows)

• (cygwin) make win32packdyn-xivoclient

Coding the XiVO Client

Project folder map

baselib The folder baselib contains all files necessary to build the baselib. It contains the necessary code and
data structures to communicate with the XiVO CTI server.

This library is designed to be reusable by other XiVO CTI clients. If you want to build it without the rest of the
XiVO Client, go in its folder and type:

$ qmake && make

The library will be available in the new bin folder.

xivoclient The folder xivoclient contains all other source files included in the XiVO Client.

src contains the source code files, images contains the images, i18n contains the translation files and qtaddons
contains some Qt addons used by the XiVO Client.

1.13. Contributors 459

XiVO Documentation, Release 16.08

src The source files are separated in three categories :

• the XiVO Client itself, the source files are directly in src.

• the XLet library (xletlib) contains the code common to multiple XLets (plugins), like the XLet base class
and mainly GUI stuff.

• the XLets themselves (xlets), each one is in a xlets/something subfolder.

Each XLet is compiled into a dynamic library, but some XLets are still compiled within the xivoclient executable
instead of in a separated library. They are marked with a *-builtin subfolder name.

delivery This folder contains all license informations necessary for the XiVO Client to be redistributed, i.e. the
GNU GPLv3 and the additional requirements.

Configuration access

The settings of the application are stored in BaseEngine for runtime and in files when the client is closed :

• ~/.config/XiVO on GNU/Linux systems

• (what about other platforms?)

There are now 3 sets of functions from BaseEngine that you can use to read/store settings :

getConfig() / setConfig() They are proxy methods to use the BaseConfig object inside BaseEngine. They use
QVariantMap to store the settings values. They are currently used to store/retrieve options used in the ConfigWid-
get.

You can find the available keys to access data in the detailed Doxygen documentation of BaseEngine, or in
baseengine.h.

Note that the settings stored in BaseConfig won’t be written in the configuration file if BaseEngine is not aware of
their existence (loaded in loadSettings and saved in saveSettings).

getSettings() Through this function, you can access the lowest level of configuration storage, QSettings. It also
contains the options stored in BaseConfig, but is less easy to use.

This direct access is used for purely graphical settings, only used to remember the appearance of the GUI until
the next launch. These settings don’t have to be shared with other widgets, and storing them directly in QSettings
avoids writing code to import/export to/from BaseConfig.

getProfileSetting() / setProfileSetting() This pair of methods allow you to read/write settings directly in QSet-
tings, but specifically for the current configuration profile.

Configuration profiles

When starting XiVO Client with an argument, this argument is interpreted as a profile name. This profile name
allows you to separate different profiles, with different configuration options.

For example, configuration profile “profileA” will auto-connect with user A and password B and “profileB” will
not auto-connect, but is set to connect with user C, no password remembered. To invoke these profiles, use :

$ xivoclient profileA
$ xivoclient profileB

The default configuration profile is default-user.

460 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Recognizing / extracting phone numbers

Of course, working on XiVO Client implies working with phone numbers. But how to interpret them easily, when
we are not sure of the format they’re in?

You can use the PhoneNumber namespace (baselib/src/phonenumber.h) to do that, it contains routines for recog-
nition/extraction of phone numbers, that way you don’t have to parse manually.

These subroutines are pretty basic for the moment, if you need/want to improve them, feel free to do it.

Retrieving CTI server infos

Informations are synchronized from the server to the BaseEngine when the client connects.

It is stored in BaseEngine in “lists”. It is stored in a format close to the one used to transmit it, so you can see the
CTI protocol definition for further documentation.

Each list contains objects of different type. These types are :

• channel

• user

• phone

• trunk

• agent

• queue

• group

• meetme

• voicemail

• queuemember

• parking

Each type corresponds to a class derived from XInfo, e.g. channel infos are stored in ChannelInfo objects.

The basic attributes of all objects are 3 strings: the IPBX ID, the XiVO object ID and the extended ID of the
object, which is the two previous attributes linked with a “/”.

Listen to IPBX events If you want your XLet to receive IPBX/CTI events, you can do so by inheriting the
IPBXListener interface.

You must specify which type of events you want to listen. This depends of the implemented functions in the CTI
server. You can register to listen these events by calling the IPBXListener method :

registerListener(xxx);

For now, xxx, the event type, can take take the values : * chitchat * history * records_campaign * queuestats

On reception of the specified type of event, BaseEngine will call the IPBXListener method parseCom-
mand(QVariantMap).

You should then reimplement this method to make it process the event data, stored in the QVariantMap parameter.

The parking XLet

There are two concepts here : * Parked calls: These calls have been parked by a switchboard or an operator. They
are waiting to be answered by a specific person, unlike a queue, where calls will be answered by one of the agents

1.13. Contributors 461

XiVO Documentation, Release 16.08

of the group associated to the queue. Each parked call is given a phone number so that the call can be answered
by everyone.

• Parking lots: They are containers for parked calls. Each parking lot has a phone number, used to identify
where to send the call we want to park.

ParkingWidget represents a parking lot and contains a table that stores all parked calls.

Adding new XLets

When you want to add a new XLet, you can use the basic XLetNull, that only prints “Hello World”. Here is a
little script to accelerate the copy from XLetNull.

#!/usr/bin/env sh

newname="newname" # Replaces xletnull
NewName="NewName" # Replaces XLetNull & XletNull
NEWNAME="NEWNAME" # Replaces XLETNULL

if [! -d xletnull] ; then

echo "Please execute this script in XIVO_CLIENT/plugins"
echo $newname
exit 1

fi

cp -r xletnull $newname
cd $newname
rm -f moc* *.o Makefile

for f in $(find . -type f -print) ; do
mv $f `echo $f | sed s/xletnull/$newname/`

done

find . -type f -exec sed -i "s/xletnull/$newname/g;s/X[Ll]etNull/$NewName/g;s/XLETNULL/$NEWNAME/g" {} \;</nowiki>

Before executing the script, just replace the first three variables with the name of the new XLet.

Then, you must add a line in xivoclient/xlets.pro to add your new directory to the SUBDIRS variable.

Then you can start implementing your new class. The <xletname>Plugin class is only an interface between the
main app and your XLet.

Translations If you want to localize your XLet, there are four steps.

Modify the sources In the <xletname>Plugin constructor, add the line :

b_engine->registerTranslation(”:/<xletname>_%1”);

before the return instruction.

Modify the project file Add these lines in the .pro file in your XLet directory :

TRANSLATIONS = <xletname>_fr.ts TRANSLATIONS += <xletname>_nl.ts

RESOURCES = res.qrc

Replace fr and nl with the languages you want.

462 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

Create the resource file In a file res.qrc in your XLet directory, put these lines :

<!DOCTYPE RCC><RCC version="1.0">
<qresource>

<file><xletname>_fr.qm</file>
<file><xletname>_nl.qm</file>

</qresource>
</RCC>

These files will be embedded in the Xlet library binary.

Create the translation files In your XLet directory, run :

lupdate <xletname>.pro

This creates as much .ts translation files as specified in the .pro file. You can now translate strings in these file.

The XLet will now be compiled and translated.

Add a new XLet

For now, it is not possible to add easily an XLet without changing the CTI server configuration files.

If you just want to test your new XLet, you can add the following line in baseengine.cpp :

m_capaxlets.push_back(QVariantList() << QVariant(“<xletname>”) << QVariant(“tab”));

right after the line

m_capaxlets = datamap.value(“capaxlets”).toList();

You can replace “tab” with “grid” or “dock”.

Add a translation

This is definitely not something funny and not easy to automatize.

You have to add, in every .pro file of the project (except xlets.pro and all those that don’t need translations), a line

TRANSLATIONS += <project>_<lang>.ts

Replace <project> with the project name (xivoclient, baselib, xlet) and <lang> by the identifier of your language
(en, fr, nl, ...) Then you have to add, in every .qrc file, the .qm files corresponding to the ones you added in the
.pro files, such as :

<file><project>_<lang>.qm</file>

in the <qresource> section of these XML .qrc files.

After that, you have to run, in the XiVO Client root directory, something like :

find . -name *.pro -exec lupdate {} ;

This will create or update all .ts translation files registered in the .pro files.

You can then start translating the strings in these files, in the xivoclient/i18n folder.

Code modification

If you want to be able to select your new language from within the XiVO Client, you have to add it in the interface.

For that, you can add your new language in the m_locale_cbox QCombobox in ConfigWidget.

1.13. Contributors 463

XiVO Documentation, Release 16.08

CTI debugging tool

If you have a problem and you want to see what is going on between the CTI server and client, you can use
a specific script, designed specifically for XiVO, instead of using something like Wireshark to listen network
communications.

Profiling

To get profiling informations on the XiVO Client:

• Compile the XiVO Client with debugging symbols

• Run the command:

LD_LIBRARY_PATH=bin valgrind --tool=callgrind bin/xivoclient

• Quit the client

• Open the generated file callgrind.out.<pid> with KCacheGrind

Automatic checking tools

We use two tools to check the source code of the XiVO Client: CppCheck et Valgrind.

CppCheck Usage:

cppcheck -I baselib/src -I xivoclient/src .

Valgrind (Memcheck) Usage:

LD_LIBRARY_PATH=bin valgrind --leak-check=full --suppressions=valgrind.supp --num-callers=30 --gen-suppressions=yes bin/xivoclient

You need to fill a file valgrind.supp with Valgrind suppressions, to avoid displaying errors in code you have
no control over.

Here is a template valgrind.supp you can use. All memory in the XiVO Client is allocated using the new
operator, so all calls to malloc and co. must come from libraries:

{
malloc
Memcheck:Leak
fun:malloc
...

}

{
calloc
Memcheck:Leak
fun:calloc
...

}

{
realloc
Memcheck:Leak
fun:realloc
...

}

{

464 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

memalign
Memcheck:Leak
fun:memalign
...

}

Figures

Here’s a call graph for the presence features. Not complete, but gives a good global view of the internal mecha-
nism.

Fig. 1.107: Xivo Client presence call graph

Here’s a call graph describing the chaining of calls when the XiVO Client connects to the server.

Fig. 1.108: Xivo Client login call graph

Manage Translations of the XiVO Client

This sections describes how to manage XiVO Client translations from a developer point of view. If you want to
help translate the XiVO Client, see Translating XiVO

You need to install these tools:

pip install transifex-client
apt-get install qt4-dev-tools

1.13. Contributors 465

XiVO Documentation, Release 16.08

How to Add a New Translated String

String to be translated is marked using the tr macro in the source code.

Example:

tr("Number");

Updating translations on transifex Run the following commands from the root of the xivo-client-qt project:

make pushtr

After this command, you can visit Transifex, and check that the xivo-client is 100% translated for your language.
Once all the translations have been checked, run the 3 following commands:

make pulltr
git commit
git push

Warning: Under Arch Linux, you must have qt5 installed and prepend QT_PATH=/usr/bin before make
{pull,push}tr.

Add a new XiVO Client locale

Localizing the XiVO Client goes through four steps :

• Creating the new translation in Transifex

• Generatint the translation files

• Embedding the translation in the binaries

• Displaying the new locale to be chosen

Creating the new translation in Transifex Log into Transifex and click the Create language option.

Generate translation files The translation files will be automatically generated from the source code.

For the command to create files for your locale, you need to ensure it is listed in the project file.

There are a few project files you should edit, each one will translate a module of the XiVO Client :

• baselib/baselib.pro

• xivoclient/xivoclient.pro

• xivoclient/xletlib.pro

• xivoclient/src/xlets/*/*.pro

In these files, you should add a line like this one:

TRANSLATIONS += $$ROOT_DIR/i18n/xivoclient_fr.ts

This line adds a translation file for french. Please replace fr by the code of your locale. The $$ROOT_DIR
variable references either xivoclient or baselib.

You can use a command like the following to automate this ($LANG is the new language):

find . -name '*.pro' -exec sed -i -e 's|^TRANSLATIONS += $${\?ROOT_DIR}\?/i18n/\(.*\)_en.ts|\0\nTRANSLATIONS += $$ROOT_DIR/i18n/\1_$LANG.ts|' {} \;

466 Chapter 1. Table of Contents

https://www.transifex.com/avencall/xivo/

XiVO Documentation, Release 16.08

To actually create the files, you will have to use the translation managing script. But first, you must tell the script
about your new locale. Edit the utils/translations.sh file and add your locale to the LOCALES variable.
Then, you can run the script:

$ make pulltr

Embed the translation files For each project previously edited, you should have a corresponding .qrc file.
These resource files list all files that will be embedded in the XiVO Client binaries. You should then add the
corresponding translation files like below:

<file>obj/xivoclient_fr.qm</file>

This embeds the French translation of the xivoclient module, corresponding to the translation file above. The
path is changed to obj/ because the .qm file will be generated from the .ts file.

You can use a command like the following to automate this ($LANG is the new language):

find . -name '*.qrc' -exec sed -i -e 's|^\(*\)<file>\(.*\)obj/\(.*\)_fr.qm</file>|\0\n\1<file>\2obj/\3_$LANG.qm</file>|' {} \;

Display the new locale You have to edit the source file xivoclient/src/configwidget.cpp and add
the entry corresponding to your locale in the locale-choosing combobox.

1.14 Quality assurance

1.14.1 Testing architecture

Fig. 1.109: Testing architecture

Legend:

1.14. Quality assurance 467

XiVO Documentation, Release 16.08

• assu is our production XiVO, used to make calls in the company. We also use it as a source of “external”
calls to the test servers.

• dev-gateway is a simple gateway, to link all other servers.

• xivo-daily is reinstalled every day and runs all the automatic tests in xivo-acceptance.

• xivo-load handles a lot of calls all day long, and we monitor the system metrics while it does.

• callgen makes the calls towards xivo-load

• xivo-test and xivo-test-slave are used for manual tests we run before each release

• xivo-premium (not yet installed) will allow us to test the new xivo-premium hardware

1.15 Troubleshooting

The list of current bugs can be found on the official XiVO issue tracker.

1.15.1 Transfers using DTMF

When transfering a call using DTMF (*1) you get an invalid extension error when dialing the extension.

The workaround to this problem is to create a preprocess subroutine and assign it to the destinations where you
have the problem.

Under Services → IPBX → IPBX configuration → Configuration files add a new file containing the following
dialplan:

[allow-transfer]
exten = s,1,NoOp(## Setting transfer context ##)
same = n,Set(__TRANSFER_CONTEXT=<internal-context>)
same = n,Return()

Do not forget to substitute <internal-context> with your internal context.

Some places where you might want to add this preprocess subroutine is on queues and outgoing calls to be able to
transfer the called person to another extension.

1.15.2 Fax detection

XiVO does not currently support Fax detection. The following describe a workaround to use this feature. The
behavior is to answer all incoming (external) call, wait for a number of seconds (4 in this example) : if a fax is
detected, receive it otherwise route the call normally.

Note: This workaround works only :

• on incoming calls towards an User (and an User only),

• if the incoming trunk is a DAHDI or a SIP trunk,

• if the user has a voicemail which is activated and with the email field filled

• XiVO >= 13.08 (needs asterisk 11)

Be aware that this workaround will probably not survive any upgrade.

1. In the Web Interface and under Services → IPBX → IPBX configuration → Configuration files add a new
file named fax-detection.conf containing the following dialplan:

468 Chapter 1. Table of Contents

https://github.com/xivo-pbx/xivo-acceptance
https://projects.xivo.io/issues?set_filter=1&tracker_id=1

XiVO Documentation, Release 16.08

;; Fax Detection
[pre-user-global-faxdetection]
exten = s,1,NoOp(Answer call to be able to detect fax if call is external AND user has an email configured)
same = n,GotoIf($["${XIVO_CALLORIGIN}" = "extern"]?:return)
same = n,GotoIf(${XIVO_USEREMAIL}?:return)
same = n,Set(FAXOPT(faxdetect)=yes) ; Activate dynamically fax detection
same = n,Answer()
same = n,Wait(4) ; You can change the number of seconds it will wait for fax (4 to 6 is good)
same = n,Set(FAXOPT(faxdetect)=no) ; If no fax was detected deactivate dyamically fax detection (needed if you want directmedia to work)
same = n(return),Return()

exten = fax,1,NoOp(Fax detected from ${CALLERID(num)} towards ${XIVO_DSTNUM} - will be sent upon reception to ${XIVO_USEREMAIL})
same = n,GotoIf($["${CHANNEL(channeltype)}" = "DAHDI"]?changeechocan:continue)
same = n(changeechocan),Set(CHANNEL(echocan_mode)=fax) ; if chan type is dahdi set echo canceller in fax mode
same = n(continue),Gosub(faxtomail,s,1(${XIVO_USEREMAIL}))

2. In the file /etc/xivo/asterisk/xivo_globals.conf set the global user subroutine to
pre-user-global-faxdetection : this subroutine will be executed each time a user is called:

XIVO_PRESUBR_GLOBAL_USER = pre-user-global-faxdetection

3. Reload asterisk configuration (both for dialplan and dahdi):

asterisk -rx 'core reload'

1.15.3 Berofos Integration with PBX

You can use a Berofos failover switch to secure the ISDN provider lines when installing a XiVO in front of an
existing PBX. The goal of this configuration is to mitigate the consequences of an outage of the XiVO : with this
equipment the ISDN provider links could be switched to the PBX directly if the XiVO goes down.

XiVO does not offer natively the possibility to configure Berofos in this failover mode. This section describes a
workaround.

Logical view:

+------+ +-----+
-- Provider ----| XiVO | -- ISDN Interconnection --| PBX | -- Phones

+------+ +-----+

Connection:

+-------------Bero*fos---------------+
| A B C D |
| o o o o o o o o o o o o o o o o |
+-+-+------+-+------+-+------+-+-----+
| | | | | | | |

/ / | | | | | |
/ / +--------+ / / +---------+

2 T2 | XiVO | / / | PBX |
+--------+ / / +---------+

| | / /
\ __/ /
____/

The following describes how to configure your XiVO and your Berofos.

1. Follow the Berofos general configuration (firmware, IP, login/password) described in the the Berofos Instal-
lation and Configuration page.

2. When done, apply these specific parameters to the berofos:

1.15. Troubleshooting 469

XiVO Documentation, Release 16.08

bnfos --set scenario=1 -h 10.105.2.26 -u admin:berofos
bnfos --set mode=1 -h 10.105.2.26 -u admin:berofos
bnfos --set modedef=1 -h 10.105.2.26 -u admin:berofos
bnfos --set wdog=1 -h 10.105.2.26 -u admin:berofos
bnfos --set wdogdef=1 -h 10.105.2.26 -u admin:berofos
bnfos --set wdogitime=60 -h 10.105.2.26 -u admin:berofos

3. Add the following script /usr/local/sbin/berofos-workaround:

#!/bin/bash
Script workaround for berofos integration with a XiVO in front of PABX

res=$(service asterisk status)
does_ast_run=$?
if [$does_ast_run -eq 0]; then

/usr/bin/logger "$0 - Asterisk is running"
If asterisk is running, we (re)enable wdog and (re)set the mode
/usr/bin/bnfos --set mode=1 -f fos1 -s
/usr/bin/bnfos --set modedef=1 -f fos1 -s
/usr/bin/bnfos --set wdog=1 -f fos1 -s

Now 'kick' berofos ten times each 5 seconds
for ((i == 1; i <= 10; i += 1)); do

/usr/bin/bnfos --kick -f fos1 -s
/bin/sleep 5

done
else

/usr/bin/logger "$0 - Asterisk is not running"
fi

4. Add execution rights to script:

chmod +x /usr/local/sbin/berofos-workaround

5. Create a cron to launch the script every minutes /etc/cron.d/berofos-cron-workaround:

Workaround to berofos integration
MAILTO=""

*/1 * * * * root /usr/local/sbin/berofos-workaround

1.15.4 Upgrading from XiVO 1.2.3

1. There is an issue with xivo-libsccp and pf-xivo-base-config during an upgrade from 1.2.3:

dpkg: error processing /var/cache/apt/archives/pf-xivo-base-config_13%3a1.2.4-1_all.deb (--unpack):
trying to overwrite '/etc/asterisk/sccp.conf', which is also in package xivo-libsccp 1.2.3.1-1
...
Errors were encountered while processing:
/var/cache/apt/archives/pf-xivo-base-config_13%3a1.2.4-1_all.deb
E: Sub-process /usr/bin/dpkg returned an error code (1)

2. You have to remove /var/lib/dpkg/info/xivo-libsccp.conffiles:

rm /var/lib/dpkg/info/xivo-libsccp.conffiles

3. You have to edit /var/lib/dpkg/info/xivo-libsccp.list and remove the following line:

/etc/asterisk/sccp.conf

4. and remove /etc/asterisk/sccp.conf:

470 Chapter 1. Table of Contents

XiVO Documentation, Release 16.08

rm /etc/asterisk/sccp.conf

5. Now, you can launch xivo-upgrade to finish the upgrade process

1.15.5 CTI server is unexpectedly terminating

If you observes that your CTI server is sometimes unexpectedly terminating with the following message in
/var/log/xivo-ctid.log:

(WARNING) (main): AMI: CLOSING

Then you might be in the case where asterisk generates lots of data in a short period of time on the AMI while
the CTI server is busy processing other thing and is not actively reading from its AMI connection. If the CTI
server takes too much time before consuming some data from the AMI connection, asterisk will close the AMI
connection. The CTI server will terminate itself once it detects the connection to the AMI has been lost.

There’s a workaround to this problem called the ami-proxy, which is a process which buffers the AMI connection
between the CTI server and asterisk. This should only be used as a last resort solution, since this increases the
latency between the processes and does not fix the root issue.

To enable the ami-proxy, you must:

1. Add a file /etc/systemd/system/xivo-ctid.service.d/ami-proxy.conf:

mkdir -p /etc/systemd/system/xivo-ctid.service.d
cat >/etc/systemd/system/xivo-ctid.service.d/ami-proxy.conf <<EOF
[Service]
Environment=XIVO_CTID_AMI_PROXY=1
EOF
systemctl daemon-reload

2. Restart the CTI server:

systemctl restart xivo-ctid.service

If you are on a XiVO cluster, you must do the same procedure on the slave if you want the ami-proxy to also be
enabled on the slave.

To disable the ami-proxy:

rm /etc/systemd/system/xivo-ctid.service.d/ami-proxy.conf
systemctl daemon-reload
systemctl restart xivo-ctid.service

1.15.6 Agents receiving two ACD calls

An agent can sometimes receive more than 1 ACD call at the same time, even if the queues he’s in have the
“ringinuse” parameter set to no (default).

This behaviour is caused by a bug in asterisk: https://issues.asterisk.org/jira/browse/ASTERISK-16115

It’s possible to workaround this bug in XiVO by adding an agent subroutine. The subroutine can be either set
globally or per agent:

[pre-limit-agentcallback]
exten = s,1,NoOp()
same = n,Set(LOCKED=${LOCK(agentcallback-${XIVO_AGENT_ID})})
same = n,GotoIf(${LOCKED}?:not-locked,1)
same = n,Set(GROUP(agentcallback)=${XIVO_AGENT_ID})
same = n,Set(COUNT=${GROUP_COUNT(${XIVO_AGENT_ID}@agentcallback)})
same = n,NoOp(${UNLOCK(agentcallback-${XIVO_AGENT_ID})})
same = n,GotoIf($[${COUNT} <= 1]?:too-many-calls,1)
same = n,Return()

1.15. Troubleshooting 471

https://issues.asterisk.org/jira/browse/ASTERISK-16115

XiVO Documentation, Release 16.08

exten = not-locked,1,NoOp()
same = n,Log(ERROR,Could not obtain lock)
same = n,Wait(0.5)
same = n,Hangup()

exten = too-many-calls,1,NoOp()
same = n,Log(WARNING,Not calling agent ID/${XIVO_AGENT_ID} because already in use)
same = n,Wait(0.5)
same = n,Hangup()

This workaround only applies to queues with agent members; it won’t work for queues with user members.

Also, the subroutine prevent asterisk from calling an agent twice by hanguping the second call. In the agent
statistics, this will be shown as a non-answered call by the agent.

1.15.7 PostgreSQL localization errors

The database and the underlying database cluster used by XiVO is sensitive to the system locale configuration.
The locale used by the database and the database cluster is set when XiVO is installed. If you change your system
locale without particular attention to PostgreSQL, you might make the database and database cluster temporarily
unusable.

When working with locale and PostgreSQL, there’s a few useful commands and things to know:

• locale -a to see the list of currently available locales on your system

• locale to display information about the current locale of your shell

• grep ^lc_ /etc/postgresql/9.4/main/postgresql.conf to see the locale configuration
of your database cluster

• sudo -u postgres psql -l to see the locale of your databases

• the /etc/locale.gen file and the associated locale-gen command to configure the available system
locales

• systemctl restart postgresql.service to restart your database cluster

• the PostgreSQL log file located at /var/log/postgresql/postgresql-9.4-main.log

Note: You can use any locale with XiVO as long as it uses an UTF-8 encoding.

Database cluster is not starting

If the database cluster doesn’t start and you have the following errors in your log file:

LOG: invalid value for parameter "lc_messages": "en_US.UTF-8"
LOG: invalid value for parameter "lc_monetary": "en_US.UTF-8"
LOG: invalid value for parameter "lc_numeric": "en_US.UTF-8"
LOG: invalid value for parameter "lc_time": "en_US.UTF-8"
FATAL: configuration file "/etc/postgresql/9.4/main/postgresql.conf" contains errors

Then this usually means that the locale that is configured in postgresql.conf (here en_US.UTF-8) is not
currently available on your system, i.e. does not show up the output of locale -a. You have two choices to fix
this issue:

• either make the locale available by uncommenting it in the /etc/locale.gen file and running
locale-gen

• or modify the /etc/postgresql/9.4/main/postgresql.conf file to set the various lc_* op-
tions to a locale that is available on your system

472 Chapter 1. Table of Contents

http://www.postgresql.org/docs/9.4/interactive/creating-cluster.html

XiVO Documentation, Release 16.08

Once this is done, restart your database cluster.

Can’t connect to the database

If the database cluster is up but you get the following error when trying to connect to the asterisk database:

FATAL: database locale is incompatible with operating system
DETAIL: The database was initialized with LC_COLLATE "en_US.UTF-8", which is not recognized by setlocale().
HINT: Recreate the database with another locale or install the missing locale.

Then this usually means that the database locale is not currently available on your system. You have two choices
to fix this issue:

• either make the locale available by uncommenting it in the /etc/locale.gen file, running
locale-gen and restarting your database cluster

• or recreate the database using a different locale

Error during the upgrade

Then you are mostly in one of the cases described above. Check your log file.

Error while restoring a database backup

If during a database restore, you get the following error:

pg_restore: [archiver (db)] Error while PROCESSING TOC:
pg_restore: [archiver (db)] Error from TOC entry 4203; 1262 24745 DATABASE asterisk asterisk
pg_restore: [archiver (db)] could not execute query: ERROR: invalid locale name: "en_US.UTF-8"

Command was: CREATE DATABASE asterisk WITH TEMPLATE = template0 ENCODING = 'UTF8' LC_COLLATE = 'en_US.UTF-8' LC_CTYPE = 'en_US.UTF-8';

Then this usually means that your database backup has a locale that is not currently available on your system. You
have two choices to fix this issue:

• either make the locale available by uncommenting it in the /etc/locale.gen file, running
locale-gen and restarting your database cluster

• or if you want to restore your backup using a different locale (for example fr_FR.UTF-8), then restore
your backup using the following commands instead:

sudo -u postgres dropdb asterisk
sudo -u postgres createdb -l fr_FR.UTF-8 -O asterisk -T template0 asterisk
sudo -u postgres pg_restore -d asterisk asterisk-*.dump

Error during master-slave replication

Then the slave database is most likely not using an UTF-8 encoding. You’ll need to recreate the database using a
different locale

Changing the locale (LC_COLLATE and LC_CTYPE) of the database

If you have decided to change the locale of your database, you must:

• make sure that you have enough space on your hard drive, more precisely in the file system holding the
/var/lib/postgresql directory. You’ll have, for a moment, two copies of the asterisk database.

• prepare for a service interruption. The procedure requires the services to be restarted twice, and the system
performance will be degraded while the database with the new locale is being created, which can take a few
hours if you have a really large database.

1.15. Troubleshooting 473

XiVO Documentation, Release 16.08

• make sure the new locale is available on your system, i.e. shows up in the output of locale -a

Then use the following commands (replacing fr_FR.UTF-8 by your locale):

xivo-service restart all
sudo -u postgres createdb -l fr_FR.UTF-8 -O asterisk -T template0 asterisk_newlocale
sudo -u postgres pg_dump asterisk | sudo -u postgres psql -d asterisk_newlocale
xivo-service stop
sudo -u postgres psql <<'EOF'
DROP DATABASE asterisk;
ALTER DATABASE asterisk_newlocale RENAME TO asterisk;
EOF
xivo-service start

You should also modify the /etc/postgresql/9.4/main/postgresql.conf file to set the various
lc_* options to the new locale value.

For more information, consult the official documentation on PostgreSQL localization support.

1.16 Community Documentation

This page provides links to resources on various topics around XiVO. They have been generously created by
people from the community.

1.16.1 Tutorials

Please note that these resources are provided on an “as is basis”. They have not been reviewed by the XiVO team,
therefore the information presented may be innaccurate. We also accept resources provided in other languages
besides English.

Unless specified, the license is CC BY-SA.

Tutorial Language Level Author XiVO Version
Définition de XiVO pour la communauté et tutoriel (video) English Beginner XiVO 2015
Xivo pour les nuls French Beginner Nicolas 2012
Installing XiVO (YouTube series) English Beginner VoIP-Nuiz 14.20
Demo on line about XiVO French Beginner Support 2015
Start: how to create a user with a SIP line (YouTube series) French Beginner VoIP-Nuiz 2014
Start: how to popup an URL (Document) French Beginner
Start: how to create a context, users, voicemails, ring group, music on hold, conf.call French Beginner Networklab 2014
Tips: post-installation of XiVO on Kimsufi French Intermediate NyXD Systems 2015
Tips: username and password on XiVO French Intermediate NyXD Systems 2015
Tips: self-hosting and telephony with XiVO French Intermediate NyXD Systems 2015
XiVO provisioning + pfSense + siproxd + OVH French Intermediate NyXD Systems 2015
SCCP provisioning, unsupported phones and no DHCP French Intermediate NyXD Systems 2015
Date format on SCCP 7941 French Intermediate NyXD Systems 2015
Installing XiVO on Raspberry Pi (Raspivo) French Intermediate Iris Network 2015
How to popup an url with CTIClient French Intermediate Assonance 14.17
How to backup XiVO to external FTP with backup-ftp.sh French Intermediate Yohan Vitu 2015
How to create a XiVO Client French Intermediate Yohan Vitu 2015
How to configure a C610P IP on XiVO French Intermediate Yohan Vitu 2015
How to export the phonebook of XiVO with phonebook_csv_export.py French Intermediate Yohan Vitu 2015
How to use openVPN on XiVO French Expert Yohan Vitu 2015
How configure SNOM M700 DECT French Intermediate Jonathan Thomas 2015
Scripted provisioning for SNOM M700 DECT with specific scripts French Intermediate Jonathan Thomas 2015
How to configure XiVO with Untangle firewall English Intermediate Scott McCarthy (SMS IT Group) 16.04

Continued on next page

474 Chapter 1. Table of Contents

http://www.postgresql.org/docs/9.4/interactive/charset.html
https://creativecommons.org/licenses/by-sa/3.0/
https://www.youtube.com/watch?v=leMZi6cU8iM
http://xivopourlesnuls.wordpress.com
https://www.youtube.com/watch?v=EmY2KhCn418
https://xivo-demo.avencall.com
https://www.youtube.com/watch?v=EmY2KhCn418
https://drive.google.com/file/d/0B-gL3lbdXgynaklOMlFOZ0xETzA/view?pli=1
http://www.networklab.fr/xivo-configuration-basique
http://retroplace.nyxd.org/2014/02/23/ipbx-astuce-post-installation-de-xivo-sur-kimsufi
http://retroplace.nyxd.org/2014/08/13/ipbx-astuce-pour-les-noms-dutilisateurs-et-mots-de-passe-des-extensions-xivo/
http://retroplace.nyxd.org/2015/01/28/xivo-auto-hebergement-telephonie-pfsense-ovh/
http://retroplace.nyxd.org/2015/01/28/xivo-auto-hebergement-telephonie-pfsense-ovh/
http://retroplace.nyxd.org/2015/03/24/xivo-sccp-et-provisioning-sur-telephones-non-supportes-et-dhcp-desactive/
http://retroplace.nyxd.org/2015/02/06/xivo-probleme-daffichage-de-lheure-sur-cisco-7941-en-cas-de-redemarrage-dasterisk/
http://raspivo.io/installation-depuis-nos-depots.html
https://raw.githubusercontent.com/xivo-pbx/xivo-tools/master/scripts/phonebook_csv_export.py
https://github.com/jthomas74/prov-m700

XiVO Documentation, Release 16.08

Table 1.11 – continued from previous page
Tutorial Language Level Author XiVO Version
XiVO Platform Tutorial: Installing XiVO on a Dedicated PC English Beginner Nerd Vittles 16.07
XiVO Platform Tutorial: Installing XiVO VM on VirtualBox English Beginner Nerd Vittles 16.07
XiVO Platform Tutorial: Installing XiVO VM on VMware ESXi Platform English Beginner Nerd Vittles 16.07
XiVO Platform Tutorial: Installing XiVO VM at ImpactVPS English Beginner Nerd Vittles 16.07
XiVO Platform Tutorial: Installing XiVO VM in the Digital Ocean Cloud English Beginner Nerd Vittles 16.07
XiVO Platform Tutorial: Installing XiVO VM at CloudAtCost English Beginner Nerd Vittles 16.07
XiVO Initial Setup Tutorial: Getting Started with XiVO English Intermediate Nerd Vittles 16.07
XiVO Trunks: Installing a Vitelity SIP Trunk English Intermediate Nerd Vittles 16.07
XiVO Trunks: Installing a VoIP.ms SIP Trunk English Intermediate Nerd Vittles 16.07
XiVO Trunks: Installing a RingPlug SIP Trunk English Intermediate Nerd Vittles 16.07
XiVO Trunks: Installing a FreeVoipDeal (Betamax) SIP Trunk English Intermediate Nerd Vittles 16.07
XiVO Trunks: Installing a Google Voice-Simonics SIP Trunk English Intermediate Nerd Vittles 16.07
XiVO Call Routing Tutorial: Creating Inbound Routes for DIDs English Intermediate Nerd Vittles 16.07
XiVO Call Routing Tutorial: Creating Outbound Routes for PSTN Calling English Intermediate Nerd Vittles 16.07

1.16.2 Contribute

We gladly accept new contributions. There are two ways to contribute:

• The preferred way: open a pull request on Github and add a line to this page (see: Contributing to the
Documentation).

• You can also open a contribution ticket on the bug tracker.

Note that we only accept documents in open formats, such as PDF or ODF.

1.17 Documentation changelog

1.17. Documentation changelog 475

http://nerdvittles.com/?page_id=18289
http://nerdvittles.com/?page_id=18291
http://nerdvittles.com/?page_id=18293
http://nerdvittles.com/?page_id=18299
http://nerdvittles.com/?page_id=18297
http://nerdvittles.com/?page_id=18295
http://nerdvittles.com/?page_id=18398
http://nerdvittles.com/?page_id=18278
http://nerdvittles.com/?page_id=18275
http://nerdvittles.com/?page_id=18283
http://nerdvittles.com/?page_id=18285
http://nerdvittles.com/?page_id=18280
http://nerdvittles.com/?page_id=18591
http://nerdvittles.com/?page_id=18593
https://github.com/xivo-pbx/xivo-doc
https://projects.xivo.io/projects/xivo/issues

XiVO Documentation, Release 16.08

476 Chapter 1. Table of Contents

CHAPTER 2

Changelog

The Documentation changelog is available.

477

XiVO Documentation, Release 16.08

478 Chapter 2. Changelog

CHAPTER 3

Indices and tables

• genindex

• search

479

XiVO Documentation, Release 16.08

480 Chapter 3. Indices and tables

Index

C
ctiserver, 155

D
devices, 165

I
Identity, 60
interconnections, 202, 204, 205
interconnections/simonics, 211

M
mail, 71

N
network, 72

P
People, 60

S
Service, 62

U
users, 262

V
VLAN, 72

W
wizard, 4

X
XiVO Client, 50, 455–457
Xlets, 51

481

	Table of Contents
	Introduction
	Installation
	Getting Started
	Upgrading
	XiVO Client
	System
	Ecosystem
	Administration
	Contact Center
	High Availability (HA)
	Scalability and Distributed Systems
	API and SDK
	Contributors
	Quality assurance
	Troubleshooting
	Community Documentation
	Documentation changelog

	Changelog
	Indices and tables

